
A modular architecture for
Unicode text compression

Adam Gleave
St John’s College

A dissertation submitted to the University of Cambridge
in partial fulfilment of the requirements for the degree of
Master of Philosophy in Advanced Computer Science

University of Cambridge
Computer Laboratory

William Gates Building
15 JJ Thomson Avenue
Cambridge CB3 0FD

United Kingdom

Email: arg58@cam.ac.uk

22nd July 2016

Declaration

I Adam Gleave of St John’s College, being a candidate for the M.Phil in
Advanced Computer Science, hereby declare that this report and the work
described in it are my own work, unaided except as may be specified
below, and that the report does not contain material that has already
been used to any substantial extent for a comparable purpose.

Total word count: 11503

Signed:

Date:

This dissertation is copyright c©2016 Adam Gleave.
All trademarks used in this dissertation are hereby acknowledged.

Acknowledgements

I would like to thank Dr. Christian Steinruecken for his invaluable
advice and encouragement throughout the project. I am also grateful to
Prof. Zoubin Ghahramani for his guidance and suggestions for extensions
to this work. I would further like to thank Olivia Wiles and Shashwat
Silas for their comments on drafts of this dissertation. I would also like to
express my gratitude to Maria Lomelí García for a fruitful discussion on
the relationship between several stochastic processes considered in this
dissertation.

Abstract

Conventional compressors operate on single bytes. This works well on
ASCII text, where each character is one byte. However, it fares poorly on
UTF-8 texts, where characters can span multiple bytes. In this thesis, I
modify compressors to operate on Unicode characters.

Previously developed Unicode compressors fail on encountering binary
data. This is problematic as UTF-8 texts are often embedded in a binary
format. The first contribution of this thesis is a reversible transformation
mapping the input to a sequence of tokens, representing either Unicode
characters (where the input is UTF-8) or an error condition that precisely
specifies the invalid input (in all other cases).

There are millions of tokens, making it challenging to learn their
distribution by a simple frequency counting approach. Fortunately,
Unicode characters are allocated in blocks of the same script. Most
texts will use only one or two scripts, reducing the vast code space
to a more manageable size. The second contribution of this thesis is
a demonstration that Pólya trees can take advantage of the structured
nature of Unicode to rapidly learn which blocks are used.

Finally, I apply the above techniques to the PPM and LZW compressors,
producing Unicode-optimised versions of these algorithms. Using tokens
improves the compression effectiveness of LZW on my test data by 20%
for Unicode files, at the cost of 2% for ASCII texts. My implementation of
PPM achieves 13% greater compression on Unicode files than a state-of-
the-art compressor, PPMII. It fares 7% worse than PPMII on ASCII texts,
but 5% of this is due to my implementation using a less sophisticated
model, with only 2% attributable to token overhead.

Both PPM and LZW are widely used, making this modification of
immediate practical benefit. Moreover, it seems likely this technique
could be successfully applied to many other compressors. Further work
is needed to verify this, but it is encouraging that PPM and LZW enjoy
similar benefits, despite having substantially different designs.

Contents

1 Introduction 1

2 Compressing UTF-8 text 5
2.1 Unicode and UTF-8 . 5
2.2 Existing Unicode compression methods 6
2.3 Transforming UTF-8 data . 9

2.3.1 Tokens as integers . 11

3 Models over tokens 13
3.1 Histogram learning with smoothing 14
3.2 Pólya trees . 15
3.3 Applications . 18

4 PPM 21
4.1 The original algorithm . 22
4.2 Update exclusion . 24
4.3 Methods for histogram learning 24

4.3.1 Choosing a method . 24
4.3.2 The PPMG method . 25

5 LZW 27
5.1 Existing implementations . 27
5.2 My extension . 28

6 Evaluation 31
6.1 Test data . 32

6.1.1 Goals . 32
6.1.2 Files selected . 32

6.2 Single-symbol models . 36
6.3 LZW . 39
6.4 PPM . 43

6.4.1 Selecting parameters 43
6.4.2 Optimal parameters 45
6.4.3 Robustness of parameters 48
6.4.4 Effectiveness of the token compressor 51

7 Conclusions 59
7.1 Summary . 59
7.2 Future work . 60

7.2.1 Optimised implementation 60
7.2.2 Applications to other algorithms 60
7.2.3 Compression of other data formats 60

A Test results 63
A.1 Compression effectiveness . 63
A.2 Machine specification . 63

Bibliography 67

i

List of Figures

2.1 Token types . 10

3.1 A finite Pólya tree . 16

6.1 Compression effectiveness of PPM against depth 46
6.2 Compression effectiveness of PPM against α and β 50
6.3 Compressor resource consumption 56

List of Tables

2.1 UTF-8 byte sequences . 6

6.1 Test data . 33
6.2 Test data, by file format . 34
6.3 Effectiveness of single-symbol compressors 37
6.4 Effectiveness of LZW-family compressors 40
6.5 Summary of LZW compression effectiveness 41
6.6 Training data for PPM . 44
6.7 Parameters used for PPM . 45
6.8 Training data for PPM, by character length 46
6.9 Optimal parameters for PPM over training and test data . . 49
6.10 PPM effectiveness depending on parameter choice 49
6.11 PPM compression effectiveness against depth 49
6.12 Effectiveness of PPM-family compressors 52
6.13 Summary of PPM compression effectiveness 54

A.1 Effectiveness of all compressors (part 1) 64
A.2 Effectiveness of all compressors (part 2) 65
A.3 Compressors tested in this dissertation 66

ii

Chapter 1

Introduction

Compression effectiveness is an objective measure of an algorithm’s
‘intelligence’, in the sense of its predictive accuracy. Human test subjects
are able to compress English text at a rate of around 1.25 bits per
character (Cover and King 1978). By contrast, the best compression
algorithms achieve a rate of 1.81 bits per character.1 Closing this gap
would represent a major achievement for artificial intelligence.

As well as being of theoretical interest, text compression is of considerable
practical importance. You’ve most likely used a compressor many times
today, as the majority of websites use HTTP/1.1 compression (W3Techs
2016b).2 Compressing web pages reduces bandwidth consumption and,
consequently, page load time. Text compression is also used in data
archival to reduce storage costs.

The Unicode encoding scheme UTF-8 has become the dominant character
set for textual data, used by 87.0% of websites (W3Techs 2016a). Whereas
legacy encodings such as ASCII represent each character by a single byte,
UTF-8 maps characters to sequences of between one to four bytes. Yet text

1Based on results for the PAQ compressor over English-language, ASCII-encoded
texts, as given in table 6.13.

2As of 24th May, 2016. Based on a survey of the top ten million most popular websites
by Alexa rankings, from http://www.alexa.com.

1

http://www.alexa.com

2 CHAPTER 1. INTRODUCTION

compression has not caught up with this shift, with most compressors still
operating on individual bytes.

In this dissertation, I show that existing compressors can be modified to
operate over Unicode characters rather than bytes. I find this modification
substantially improves compression effectiveness on Unicode text files,
while imposing only a small overhead on other types of data.

My first contribution, in chapter 2, is a reversible transformation between
sequences of bytes and tokens. UTF-8 streams are mapped to a sequence of
tokens representing Unicode characters. Decoding will fail on segments
of the data that are not UTF-8 encoded. Such regions are mapped to a
sequence of error tokens that precisely specify the original input.

This transformation introduces a new problem. A compressor now needs
to learn the input distribution over millions of tokens, rather than just
256 bytes. My second contribution, in chapter 3, is a token model that
rapidly learns the input distribution by exploiting the hierarchical nature
of Unicode.

My final contribution, in chapters 4 and 5, is to show how two
compressors, PPM and LZW, can be modified to operate over any
countable alphabet and base distribution. PPM is a context-sensitive
text compressor and LZW is a dictionary coder. The two algorithms
are of substantially different design, demonstrating the generality of my
approach.

Combining these contributions yields variants of PPM and LZW that are
optimised for UTF-8 text. In chapter 6 I find compression effectiveness
on my UTF-8 test data improves, relative to the original algorithms, by an
average of 6.1% for PPM and 20.4% for LZW. This improvement comes
at a small cost of around 2% on ASCII files.3

3Calculated from the ratio of mean compression effectiveness, given in tables 6.5
and 6.13. For LZW, I compared LPT and LUB. For PPM, I contrasted PPT with PUB.

3

I also compare PPT, my variant of PPM, to state-of-the-art compressors.
On UTF-8 text I find PPT outperforms compressors with similar resource
requirements, and is competitive with those using orders of magnitude
more CPU time and memory. Finally, in chapter 7 I conclude and discuss
the outlook for future work.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Compressing UTF-8 text

The goal of this dissertation is to develop effective compressors of UTF-8
text. I start in section 2.1 by giving some background on Unicode and
UTF-8. Next, in section 2.2 I survey the existing work on Unicode
compression. Finally, in section 2.3 I describe a reversible transformation
for UTF-8 which makes UTF-8 text easier to compress.

2.1 Unicode and UTF-8

The Unicode Standard defines how to encode multilingual text (The
Unicode Consortium 2015). The latest version at the time of writing,
Unicode 8.0.0, contains 120 672 characters from all the world’s major
writing systems, as well as many archaic and historic scripts. The
standard specifies a unique number for each character, its code point.

Unicode defines three encoding schemes (UTF-8, UTF-16 and UTF-32) that
map code points to a sequence of one or more bytes. For interchange
of Unicode text, UTF-8 is the de facto standard, used by 87.0% of
websites (W3Techs 2016a). Fewer than 0.1% of websites use UTF-16 or
UTF-32, although these encodings are commonly used as an internal
representation of characters in programming language APIs.

5

6 CHAPTER 2. COMPRESSING UTF-8 TEXT

Code point Byte 1 Byte 2 Byte 3 Byte 4

0xxxxxxx 0xxxxxxx

yyy yyxxxxxx 110yyyyy 10xxxxxx

zzzzyyyy yyxxxxxx 1110zzzz 10yyyyyy 10xxxxxx

uuuuu zzzzyyyy yyxxxxxx 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx

Table 2.1: The mapping between code points and byte sequences for UTF-8. From
The Unicode Consortium (2015, table 3.6).

UTF-8 is a variable-length encoding scheme, mapping code points to
sequences of one to four bytes, as specified in table 2.1 (Yergeau 2003).
Observe that the first row maps code points between 016 and 7F16 to the
ASCII character of the same value. This property is sometimes called
“ASCII transparency”, and is a key reason for UTF-8’s popularity.

Furthermore, UTF-8 is a self-synchronising code, as the range of valid
values for the leading byte in a sequence is disjoint from those of the
trailing bytes. Additionally, for many alphabets it is a reasonably efficient
encoding, since it maps lower code points (which tend to be more
frequently used) to shorter byte sequences.

Any byte sequence that does not match one of the rows in table 2.1 is
ill-formed. The UTF-8 byte sequences that would map to the surrogate
code points D80016 to DFFF16 are also taken to be ill-formed.1 Finally, any
byte sequences corresponding to code points above 10FFFF16, the upper
bound of the Unicode code space, are also considered ill-formed by the
UTF-8 specification.

2.2 Existing Unicode compression methods

To accommodate all the world’s scripts, Unicode has a substantially
larger code space than legacy character encodings, which were specific

1The surrogate code points have a special meaning in UTF-16, but are not valid
Unicode scalar values, so are forbidden in UTF-8 and UTF-32.

2.2. EXISTING UNICODE COMPRESSION METHODS 7

to individual alphabets. An unfortunate side-effect is that texts tend to be
somewhat larger when encoded in UTF-8 rather than legacy encodings.
This inflation motivated the development of two Unicode-specific
compression methods, the Standard Compression Scheme for Unicode
(SCSU) and Binary Ordered Compression for Unicode (BOCU-1).

Both algorithms exploit the fact that the Unicode code space is divided
into blocks of characters belonging to the same script. Most texts use
characters from only a handful of blocks. So although the overall Unicode
code space is vast, adjacent characters in a text will tend to have nearby
code points. SCSU maintains a window onto a region of the code space,
encoding characters by an index into this window. BOCU-1 encodes each
character by its difference from the previous character.

SCSU is a Unicode technical standard (Wolf et al. 2005). Its state includes
a window of 128 consecutive Unicode characters. If a character lies within
the window, it can be encoded in a single byte, representing an index into
the window. This works well for small alphabetic scripts such as Greek,
where the window can cover all or most of the block. However, this
windowing method fares poorly on larger logographic scripts such as the
Chinese Hanzi. For such scripts, the SCSU encoder can switch modes into
an (uncompressed) UTF-16 stream.

SCSU compares unfavourably with general purpose compression
algorithms, with my tests in section 6.2 showing it to be between two
to four times less effective than bzip2. Furthermore, it can only operate
on Unicode data: it will fail on files that are a mixture of binary and text,
for example. However, it does have very little fixed overhead, making it
efficient for compressing short strings.

Scherer and Davis (2006) developed an alternative, BOCU-1, which
encodes each character by its difference from the previous character. Tests
by Scherer and Davis show it achieves similar compression ratios to
SCSU. It has the advantage of being directly usable in emails, as it is
compatible with the text Multipurpose Internet Mail Extensions (MIME)

8 CHAPTER 2. COMPRESSING UTF-8 TEXT

media type. Furthermore, the lexical order of the output bytes is the
same as the code point order of the original text. This makes it suitable
for applications, such as databases, where strings must be stored in a
sorted order.

Despite these benefits, BOCU-1 has proven even less popular than SCSU.
This is perhaps due to the lack of a formal specification, with the
normative reference being a C implementation of the algorithm.

The Unicode Consortium advises that anything other than short strings
should be compressed using a general-purpose compression algorithm
such as bzip2 (The Unicode Consortium 2010). The authors of SCSU
appear to have anticipated this, as one of their design goals is that the
algorithm’s output should be suitable for “input to traditional general
purpose data compression schemes” (Wolf et al. 2005, section 1).

However, Atkin and Stansifer (2003, table 6) find that the use of SCSU
or BOCU-1 as a preprocessing step decreases compression effectiveness
compared to directly compressing UTF-16 with bzip2.2 Their conclusion
is that “as far as size is concerned, algorithms designed specifically for
Unicode may not be necessary”.

In this dissertation, I show there is an alternative approach. It is possible
to extend many general-purpose compression algorithms to operate
directly over Unicode characters. This avoids the expense of creating new
compression techniques, which SCSU and BOCU-1 show is difficult to do
successfully. At the same time, it enables substantial gains in compression
effectiveness compared to the original algorithm.

This method was previously considered by Fenwick and Brierly (1998).
They modified LZ77 – a dictionary coder – to operate in a 16-bit
mode over symbols in UCS-2 (a precursor to UTF-16), reporting a 2%
improvement in compression effectiveness. LZ77 is known to perform

2Although seemingly paradoxical, this result is entirely expected. SCSU can map
different characters to the same byte sequence, if the window position has changed.
This reduces file size, but will confuse other compressors if used as a preprocessor.

2.3. TRANSFORMING UTF-8 DATA 9

poorly on text relative to algorithms such as PPM, so a 2% gain is
insufficient to make it competitive. Furthermore, UCS-2 was never widely
adopted, limiting the applicability of this technique.

2.3 Transforming UTF-8 data

Before compression, I decode UTF-8 text into a sequence of Unicode code
points. The compressor can then operate directly over these code points.
However, the system must be able to compress arbitrary input sequences,
whether or not they are valid UTF-8. For example, it might be necessary
to compress UTF-8 texts embedded inside a binary format such as a tar

archive. Note that SCSU and BOCU-1 do not handle such cases, severely
limiting their applicability.

To address this problem, I developed an invertible UTF-8 decoder and
encoder that maps between sequences of bytes and tokens. A token
represents either a Unicode code point, or an error condition that
precisely specifies the invalid input. Figure 2.1 shows the different
types of tokens. Valid streams of UTF-8 text will be transformed to
a sequence of UnicodeCharacter tokens terminated by an end-of-file
marker EOF.

Conventional UTF-8 decoders handle invalid byte sequences by
substituting a special replacement character U+FFFD, usually typeset as �? .
This practice destroy the original data, and therefore is not an option
for an invertible decoder. Instead, my representation in figure 2.1
encodes error conditions so that the original invalid input sequence can
be reconstructed exactly.

A subclass of IllegalCodePoint is used for malformed sequences that
can be decoded to a code point, but are forbidden by the UTF-8 standard.
UTF-8 is able to encode integers up to 1FFFFF16, but the upper bound
of the Unicode code space is 10FFFF16. Any values that lie above this

10 CHAPTER 2. COMPRESSING UTF-8 TEXT

Figure 2.1: UML class diagram of the tokens used to represent input byte
streams. Abstract classes are indicated by a name in italics. The concrete classes
are UnicodeCharacter, EOF, SurrogateCodePoint, Overlong, TooHigh and
IllegalByte.

2.3. TRANSFORMING UTF-8 DATA 11

bound are represented by TooHigh. There are also the surrogate code
points, from D80016 to DFFF16 (inclusive), which are only meaningful
in UTF-16 and are explicitly disallowed in UTF-8. These are represented
by SurrogateCodePoint.

Finally, a character can be encoded using more bytes than is necessary,
by padding its code point with leading 0s. For example, the character ’A’
with code point 010000012 could be encoded by a single byte of the same
value, but could also be represented by 110000012 100000012. This class
of error is indicated by Overlong, with length denoting the number of
bytes in the malformed sequence.3

All other malformed inputs are decoded to a sequence of IllegalByte

tokens. A minimal representation could dispense with IllegalCodePoint

and just use IllegalByte. However, including IllegalCodePoint makes
it possible to compress malformed UTF-8 data with similar effectiveness
to valid UTF-8 streams.

The mapping is injective – each token represents at most one byte
sequence – and is therefore reversible. My implementation is also
surjective, which ensures there are no unused tokens.4 This property
is achieved by restricting the range of values that attributes can take on;
see token.scala in the source code for details.

2.3.1 Tokens as integers

The previous description treats tokens as objects, with the attributes
specified in figure 2.1. It is often computationally more convenient
to operate over integers rather than objects. There are finitely many
tokens N, so clearly a bijective mapping φ between tokens and integers

3It is possible to have a surrogate code point encoded using more bytes than is
necessary. This case is represented as Overlong, not as SurrogateCodePoint.

4Unused tokens would increase the size of compressor data structures, and
potentially decrease compression effectiveness if they were assigned probability mass
by the model.

12 CHAPTER 2. COMPRESSING UTF-8 TEXT

in the range [0, N − 1] is possible. I chose the following mapping,
which is simple to compute and preserves the hierarchical nature of the
representation.

Each token type T (i.e. a concrete class from figure 2.1) has an
associated bijective mapping φT from instances of T to integers in the
range [0, NT − 1], where NT is the number of tokens of type T. For
example, φUnicodeCharacter maps each character to its code point.5

I define my overall bijective mapping φ in terms of these type-specific
mappings by:

φ(x) = ∑
S∈LEFT(T)

NS + φT(x), (2.1)

where LEFT(T) is the set of all token types to the left of type T in an in-
order walk over the tree in figure 2.1. Effectively, this mapping partitions
the region [0, N − 1] into contiguous subregions of length NT for each
token type T, in the order (from left-to-right) they occur in the tree.

This mapping has the appealing property of allocating semantically
related tokens to nearby integers. Since the tree in figure 2.1 is an
inheritance hierarchy, similar types are closer together in the in-order
walk and so are allocated nearby regions. Furthermore, for tokens x and y
of the same type T, their difference in the overall mapping φ(x)− φ(y)
is equal to their difference in the type-specific mapping φT(x) − φT(y).
Adjacent Unicode characters will thus be mapped to consecutive integers
by φ.

5The mapping is similarly trivial for most other types. See token.scala in the source
code for details.

Chapter 3

Models over tokens

In the previous chapter, I described a reversible transformation from
streams of bytes to sequences of tokens. Each token can represent either
a Unicode code point or a specific error condition. In this chapter, I
investigate models over these tokens.

The simplest possible model is a uniform distribution, assigning equal
probability to every token. There are N = 2, 164, 993 possible tokens, so
this would compress at a rate of log2 N ≈ 21.046 bits per character. For
scripts such as the Chinese Hanzi, this is an improvement over UTF-8,
which uses three bytes – or 24 bits – per character.

However, a uniform distribution is typically a poor choice. Some scripts,
such as the Latin alphabet, are used more widely than others, such as
Egyptian hieroglyphs. Furthermore, characters in the same script may
occur at different frequencies. The letter ‘e’, for example, is far more
common than ‘z’ in typical English texts.

A better approach is to assign probabilities to characters based on
how frequently they occur in some corpus. But the distribution of an
individual text may differ substantially from the corpus average. In
particular, texts are typically written in a single script, concentrating
the probability mass in the contiguous block of Unicode characters

13

14 CHAPTER 3. MODELS OVER TOKENS

corresponding to that script.1

Since no single distribution can be a good fit for all texts, I investigate
adaptive models that attempt to learn the source distribution. I start by
outlining a simple histogram learner in section 3.1. Next, I describe
Pólya trees in section 3.2, a learning procedure that tends to assign
similar probabilities to characters of the same script. I conclude in
section 3.3 by discussing the suitability of the two approaches in different
applications.

3.1 Histogram learning with smoothing

Predictions of the next character xN+1 can be made from the empirical
distribution of the input x1, · · · , xN observed so far:

P (xN+1 = x|x1, · · · , xN) =
nx

N
, (3.1)

where nx is the number of occurrences of x in the input sequence.
However, for small N the empirical distribution may be a poor predictor.
For data compression, the zero-count problem is particularly troublesome.
A symbol that has yet to be observed is assigned a probability of zero,
and so cannot be encoded.

Smoothing techniques are used to address these problems. One widely-
used approach, additive smoothing, pretends every symbol x in the input
alphabet χ has been observed α/|χ| times, where α > 0 is a constant,
giving:

P (xN+1 = x|x1, · · · , xN) =
nx + α/|χ|

N + α
. (3.2)

This defines a distribution that is a weighted average between the uniform
and empirical distribution. As more observations are made, increasing

1The frequency of characters tends to be similar for texts of the same language,
although it varies slightly. In an extreme case, lipograms exclude one letter of the alphabet
entirely.

3.2. PÓLYA TREES 15

weight is placed on the empirical distribution, at a rate inversely
proportional to α. Additive smoothing can be generalised to allow any
base distribution H, not just the uniform distribution, producing:

P (xN+1 = x|x1, · · · , xN) =
nx + αH(x)

N + α
. (3.3)

This model, which I shall denote HL(H, α), avoids the zero-count
problem entirely. Furthermore, for well-chosen H it can provide good
probability estimates even for small N.

Historical note. The construction of eq. (3.3) is called a Pólya urn, and
is equivalent to a Chinese restaurant process. The Pólya urn is in turn a
sequential construction of a Dirichlet process. The theoretical background
of Dirichlet processes is beyond the scope of this dissertation. See Teh
(2010) for a thorough and comprehensive treatment or Frigyik et al. (2010)
for a more gentle introduction.

3.2 Pólya trees

An alternative approach to histogram learning over an alphabet χ is a
finite Pólya tree. This method uses a balanced binary search tree. Each
symbol x ∈ χ has a corresponding leaf node lx, and can be uniquely
represented by the path from the root to lx, denoted PATH(x). Each
internal node i has a bias θi ∼ Beta(αi, βi) representing the probability of
taking the left branch. Let θ = (θ1, · · · , θn), where n is the number of
internal nodes. The probability of a symbol x ∈ χ is defined to be:

P (x |θ) = ∏
i∈PATH(x)

B(bi|θi), (3.4)

where B(k|p) = p1−k(1− p)k is the PDF of the Bernoulli distribution, and
bi ∈ {0, 1} is the branching decision at internal node i. Since the Beta

16 CHAPTER 3. MODELS OVER TOKENS

4 : 6

3 : 4

A

20
48

2
3

B

10
48

1
3

5
8

1 : 2

C

9
48

1
2

D

9
48

1
2

3
8

Figure 3.1: An example of a finite Pólya tree over the alphabet χ = {A, B, C, D}.
The parameters of the Beta prior at each internal node i are set to αi = βi = 1.
Internal nodes are labelled with Li : Mi, where Li is the number of times the
left branch was taken and Mi is the total number of branching decisions. Edges
are labelled with the predictive probability of the Beta distribution given Li and
Mi. Each leaf node x ∈ χ is labelled with its predictive probability P(x) from
eq. (3.5).

distribution is a conjugate prior of the Bernoulli distribution, the biases θi

can be marginalised giving the predictive probability:

P (x) = ∏
i∈PATH(x)

B
(

bi

∣∣∣∣ αi + Li

αi + βi + Mi

)
, (3.5)

where Mi is the total number of branching decisions and Li is the number
of times the left branch was taken at node i. An example Pólya tree is
shown in figure 3.1.

Let PRE(x, y) denote the common prefix of PATH(x) and PATH(y) (or
the empty sequence ε, if there is none). We can then factor P(x) as:

P (x |θ) =
 ∏

i∈PRE(x,y)
B(bi|θi)

 ∏
i∈PATH(x)\PRE(x,y)

B(bi|θi)

 , (3.6)

and similarly for P(y).

Since the tree is ordered, the closer symbols x, y ∈ χ are to each other,

3.2. PÓLYA TREES 17

the longer their prefix PRE(x, y).2 Their probabilities P(x) and P(y) will
thus share many initial terms, and so P(x) and P(y) will tend to take on
similar values. This is apparent in figure 3.1. ‘B’ is assigned a higher
probability than ‘C’ or ‘D’, despite all three symbols occurring once each,
since ‘B’ is next to the frequently occurring symbol ‘A’.

Unicode code points are allocated in blocks of characters from the same
script. Most texts use only a small number of scripts, so the histogram of
code points in a file will be concentrated over a handful of blocks. This
suggests the Pólya tree, with suitably chosen parameters, may be able to
more rapidly adapt to typical distributions over Unicode symbols than
other histogram learners.

There are over a million tokens, so a naive representation of a Pólya tree
would take up a significant amount of memory. Fortunately, there is a
simple sparse representation of the tree. It is only necessary to store the
counts Li and Mi for each node. Furthermore, Li ≤ Mi for all nodes i and,
if a node j is in the subtree rooted at i, then Mj ≤ Mi. These properties
justify ‘pruning’ any parts of the tree that have zero counts.

Pólya trees were first applied to compression by Steinruecken (2014,
section 4.3.1), who used them to learn the distribution of bytes in
ASCII text. For very small inputs, he found a benefit from using a
Pólya tree rather than the histogram learner described in section 3.1.
However, their compression effectiveness was almost indistinguishable
when the input was longer than a few thousand bytes (Steinruecken 2014,
figure 4.3).

Steinruecken highlighted that Pólya trees might be well-suited to learning
distributions over Unicode characters, but did not pursue this approach
further. To the best of my knowledge, this dissertation contributes the first
implementation of a Pólya tree learner over Unicode characters. Another
novel contribution is the use of the Pólya tree as a base distribution for
more sophisticated models, discussed further in the next section.

2To be precise, the prefix length is non-decreasing on |x− y|.

18 CHAPTER 3. MODELS OVER TOKENS

Although not needed for this dissertation, the Pólya tree generalises
to a version with infinite depth. This general form is able to express
both discrete and continuous distributions, depending on the parameter
choice. It even includes the Dirichlet process as a special case, when the
parameters αi, βi of the Beta distributions are set to decay exponentially
with depth (Müller and Rodriguez 2013, section 4.1). See e.g. Mauldin
et al. (1992) for further information.

3.3 Applications

A compressor can be built from a probabilistic model M using arithmetic
coding (Witten et al. 1987). The resulting compressor is optimal (within
two bits) on inputs distributed according to M.

A sequence of independent and identically distributed (iid) symbols with
known distribution D is particularly simple to compress. For each symbol
in the input sequence, compress it using arithmetic coding over D.

In practice, D is unknown, forcing the use of adaptive techniques
such as the histogram or Pólya tree learner from the previous sections.
Each token xN is compressed using arithmetic coding on the predictive
distribution conditioned on x1, · · · , xN−1. The closer the predictive
distribution is to D, the greater the compression effectiveness.

Unfortunately, inputs are rarely iid. Text certainly isn’t independent: ‘u’ is
much more likely to occur after ‘q’ than after ‘z’, for example.

To accommodate dependency, it is common to use context-sensitive
models, with distributions conditional on the preceding symbols. These
models can learn, for example, that although ‘u’ rarely occurs in the input
data, it often occurs in contexts ending with ‘q’.

Context-sensitive models are often parametrised by a base distribution
over tokens. Initially, the predictive distribution is equal to the base
distribution. As more observations are made, the predictive distribution

3.3. APPLICATIONS 19

converges to the empirical distribution. Two techniques are commonly
used to combine the base and empirical distributions: blending and
escaping.

In a blending model, the predictive distribution is a weighted average of
the base and empirical distribution. The weight placed on the empirical
distribution increases with the number of observations.

With escaping, the base distribution is only used for unseen symbols. The
alphabet χ is extended to include a special escape symbol ESC. Let S denote
the set of symbols previously observed. When a symbol x ∈ χ is seen
for the first time (i.e. x 6∈ S), first ESC is encoded in the context-sensitive
model. This is followed by x being encoded using the base distribution H
conditioned on x not having been previously observed, that is H|x 6∈ S, a
technique called exclusion coding.

The histogram learner HL(H, α) from section 3.1 (with base distribution
H and concentration parameter α) could be used as a base distribution
in more complex models. However, for the context-sensitive models
PPM and LZW considered in this dissertation (which both use escaping)
there is no benefit from using HL(H, α) as the base distribution rather
than H directly. This is because HL(H, α) and H assign equal probabilities
to any unseen symbol x when all observed symbols are excluded (i.e.
conditioning on x 6∈ S).

By contrast, the Pólya tree learner is well-suited to use as a base
distribution. It can make good predictions about the probability of
symbols that have never before been seen, by taking into account the
frequency with which neighbouring symbols have occurred. For example,
suppose the Pólya tree has seen many Chinese Hanzi. It will then assign
a higher probability to seeing a new Hanzi character compared to a
character from another script.

20 CHAPTER 3. MODELS OVER TOKENS

Chapter 4

PPM

In the previous chapter I surveyed models that do not use context. These
models define a single distribution over the symbol alphabet based on the
number of times each symbol has occurred in the input stream. Context-
free models have the benefit of simplicity. However, they fail to capture
dependencies between adjacent characters in text. The distribution of
symbols following the letter ‘q’ is quite different from the distribution
following the letter ‘t’, for example.

Context-based models try to resolve this problem by learning separate
symbol distributions for different contexts. In an input sequence (xi), the
length-k context of symbol xn is the sequence (xn−k, xn−k+1, · · · , xn−1).
The simplest approach is to use contexts of fixed length N, constructing
a histogram for each context from the data.

In this model, what value should the order N be set to? Higher-order
models will make better predictions, provided accurate statistics are
known in each context. Lower-order models have worse performance in
the long run, but quickly learn the distribution over the input data.

Cleary and Witten (1984) bypass this problem in their Prediction by
Partial Matching (PPM) algorithm by using variable length contexts. The
longest previously encountered context is used to encode each symbol.

21

22 CHAPTER 4. PPM

If the symbol is unseen in that context, a special escape symbol is coded,
and the context is shortened by dropping the oldest symbol. This process
repeats until a context containing the symbol is found. If the symbol
has never been observed in the input sequence, it will not be present
even in the empty context, in which case the algorithm escapes to a base
distribution (often a uniform distribution).

This design means PPM is not tied to any particular symbol alphabet.
Rather, the alphabet is implicit in the support of the base distribution.
Making PPM operate over tokens is therefore as simple as using a
distribution over tokens, such as one of the models from the previous
chapter.

In section 4.1 I describe the original PPM algorithm by Cleary and Witten
(1984). Many variants of PPM have been developed since then. In
sections 4.2 and 4.3 I describe two modifications that are incorporated
in the implementation used for this dissertation.

4.1 The original algorithm

PPM is parametrised by a maximum context depth D. To encode a
symbol x, PPM starts with the D-length context preceding x. (Unless
x is one of the first D symbols, in which case it uses as many preceding
symbols as are available.) If x is unseen in this context, an escape symbol
(ESC) is coded. (The ESC symbol is a virtual symbol that is treated as
part of the alphabet.) The context is then shortened to length D − 1, by
dropping the symbol furthest away from x, and the process is repeated
recursively.

In most cases, a context is eventually reached where x has been seen. In
this case, it is coded directly with the histogram learned for this context.
If it is the first time symbol x occurs in the input data, x will not be present
even in the empty context of length 0. In this case, once the empty context

4.1. THE ORIGINAL ALGORITHM 23

is reached a further ESC is encoded, and x is then directly coded using the
base distribution.

This generic approach does not specify how the histogram in each context
is used to assign probabilities to symbols. Many methods have been
proposed: I survey the most notable approaches in section 4.3. For
simplicity of exposition, I start by describing ‘method A’ from Cleary
and Witten (1984), which assigns the following probabilities:

P(x) =
nx

N + 1
and P(ESC) =

1
N + 1

, (4.1)

where nx is the number of times symbol x occurs in the current context,
and N is the total number of symbols present in that context.

Encoding an escape symbol does not just serve to switch to a shorter
context level. It also conveys information: symbol x is not any of the
symbols S that were observed in that context.1 PPM uses exclusion coding
to take advantage of this. By treating the symbols in S as if they had zero
counts, the probability mass is redistributed to other symbols. Letting
S = ∑x∈S nx, the probability assignments for method A become:

P(x) =

nx

N − S + 1
x 6∈ S

0 x ∈ S
and P(ESC) =

1
N − S + 1

. (4.2)

Exclusion coding is widely used, but the PPM literature usually gives
probabilities in the plain form of eq. (4.1) in preference to the explicit
form of eq. (4.2). I will follow this convention and use the plain form in
the remainder of the dissertation.

Practical implementations of PPM must be able to efficiently compute
the summary statistics nx and N. A trie data structure is particularly well
suited to this, see e.g. Salomon (2012, section 5.14.5) for more details.

1The exception is if no symbols have been observed in the context, that is N = 0. But
in this case, escaping is predicted with probability 1, so there is no overhead.

24 CHAPTER 4. PPM

4.2 Update exclusion

In the original implementation by Cleary and Witten, after observing a
symbol x its count nx is incremented in the current context and all shorter
contexts. The resulting counts nx correspond to the actual number of
times x has occurred in that context.

An alternative is to increment the count nx only in context levels at or
above the context in which x is encoded. This modification is termed
update exclusion and was proposed by Moffat (1990, section III.B), who
found it to improve compression effectiveness by 5%. It also has the
benefit of being more computationally efficient than the original, since in
the common case the procedure terminates early.

Update exclusion makes the probability of a symbol depend on the
number of contexts in which it occurs, rather than its raw frequency.
Further explanation of the probabilistic interpretation of update exclusion
is provided by MacKay and Bauman Peto (1995).

4.3 Methods for histogram learning

4.3.1 Choosing a method

The PPM algorithm defines an adaptive and context-sensitive probability
distribution over input symbols. This distribution, and the assumptions
it makes, is sometimes called the probabilistic model of the algorithm. In
the first part of section 4.1 I described a generic PPM algorithm whose
probabilistic model depends on a method assigning symbol probabilities
based on the histogram of the current context. The latter part of
section 4.1 used the example of ‘method A’, often called PPMA.

Cleary and Witten (1984) claim that “in the absence of a priori knowledge,
there seems to be no theoretical basis for choosing one solution [method]

4.3. METHODS FOR HISTOGRAM LEARNING 25

over another”. This view has resulted in a proliferation of methods, most
notably PPMA and PPMB by Cleary and Witten (1984), PPMC by Moffat
(1990), PPMD by Howard (1993), PPME by Åberg et al. (1997), and PPMP
and PPMX by Witten and Bell (1991).

These methods have been designed for PPM compressors operating over
bytes. A method appropriate for bytes might not perform well over the
much larger space of tokens described in section 2.3. But to enable a
direct comparison between byte-based and token-based compressors, it
is desirable to use the same family of methods. Accordingly, I selected
PPMG, a method taking two continuous parameters which generalises
PPMA, PPMD and PPME (Steinruecken 2014, section 6.4.2).

Although I agree with Cleary and Witten that there is no way to design
a method without making some a priori assumptions, with PPMG the
optimal parameters can be determined a posteriori from the data. These
optimal parameters, for a sufficiently representative training corpus, may
be a useful initialisation of the algorithm for other data. It is also
possible to choose parameters dynamically, optimising them as the text is
compressed, as demonstrated by Steinruecken et al. (2015).

For simplicity, I use static parameters (selected by optimising over
training data). I find the optimal parameters vary significantly between
bytes and tokens, confirming the benefit of a principled approach to
method construction. See sections 6.4.1 and 6.4.2 for more details.

4.3.2 The PPMG method

PPMG takes a discount parameter β ∈ [0, 1] and concentration parameter
α ∈ [−β, ∞), assigning probabilities:

P(x) =
nx − β

N + α
· 1 [nx > 0] and P(ESC) =

Uβ + α

N + α
, (4.3)

26 CHAPTER 4. PPM

where nx is the number of observations of x in the current context, N
is the total number of observations in the current context and U is the
number of unique symbols observed in the current context.

The parameter α can be interpreted as a pseudocount for the escape
symbol ESC. However, the number of unique symbols varies between
contexts: more letters might occur after ‘e’ than after ‘q’, for example.
It can also vary among files: a text in a logographic script will use a
larger subset of Unicode characters than one in an alphabetic script, for
example. There is therefore no universally optimal choice for α.

The parameter β allows the escape probability to adapt depending on the
input. ESC is assigned a larger probability when the number of unique
symbols U observed in this context is large. The more the size of the
character set varies among different contexts and files, the larger the
optimal value of β.

The parameters have a similar interpretation to those in a Pitman–Yor
process. See Steinruecken (2014, section 6.6.3) for more details.

Chapter 5

LZW

In this chapter I describe Lempel-Ziv-Welch (LZW), a popular
compression algorithm used, for example, in the GIF and PDF file
formats. Invented by Welch (1984), LZW is a variant of the LZ77 and
LZ78 algorithms due to Ziv and Lempel (1977, 1978).

PPM, described in the previous chapter, typically achieves greater
compression ratios than LZW, especially on text. However, LZW
can be more efficient, with a smaller runtime and memory footprint.
Furthermore, LZW is an example of a wider class of dictionary coding
algorithms, making it an interesting case study.

In section 5.1 I outline the original LZW algorithm and commonly
implemented variants. Generalising LZW to operate over tokens is more
challenging than for PPM. I state the problem and my solution in
section 5.2.

5.1 Existing implementations

LZW compresses the input sequence by encoding substrings as their
indices in a dynamically constructed dictionary. Specifically, the

27

28 CHAPTER 5. LZW

dictionary is initialised to contain every possible byte value 0016 to FF16.
The longest string w in the dictionary matching the head of the input
is located, and its index emitted. w is then removed from the input.
If the input is empty, the algorithm terminates. Otherwise, the input
can be written as x :: s, where x is a single byte, s a (possibly empty)
sequence of bytes and :: denotes string concatenation. Add w :: x to
the dictionary, and repeat the process (with the updated dictionary) to
compress x :: s.

The decompressor reconstructs the dictionary in lockstep with the
compressor. However, when w :: x is added to the dictionary in the
compressor, only w has been encoded, not x. To accommodate this,
the decompressor leaves the last byte blank in newly inserted words.
This final byte is filled in using the first byte of the next word to be
decoded.

There is a choice of how to encode the dictionary indices. Welch
(1984) originally proposed representing each index as a 12-bit unsigned
integer. Such fixed-length codes are inflexible, limiting the dictionary to
only 4096 entries in the 12-bit case, and wasteful, using more bits than
necessary.

A simple alternative is to scale the number of bits b as the dictionary
size N grows, such that 2b−1 < N ≤ 2b. This approach is used in the
Unix compress command (Salomon 2012, section 6.14). However, except
when N = 2b, this still wastes up to one bit per index. Consequently,
the implementation in this dissertation uses arithmetic coding, which
encodes each index in log2 N bits (Witten et al. 1987).

5.2 My extension

In this section, I show how LZW can be modified to operate over the
tokens described in section 2.3. The naive approach simply initialises the

5.2. MY EXTENSION 29

dictionary to contain every token rather than every byte. However, this
inflates the size of the dictionary, increasing the number of bits needed
to encode each index. Since most tokens will never be observed in a
particular file, this is extremely wasteful.

My implementation resolves this problem by escaping to a base model over
tokens (such as one of the models from chapter 3) the first time a symbol
is seen. The dictionary is initialised to contain a single entry ε, the empty
string. When the compressor encounters an unseen symbol x, it encodes
ε, and uses the base model to encode x. As with any substring seen for
the first time, x is added to the dictionary, so the escape procedure is
used at most once for each symbol. I use exclusion coding, described in
section 3.3, to take advantage of this property.

An approach similar to escaping was envisaged by Welch (1984,
page 11):

The compression string table could be initialized to have only
the null string. In that case, a special code is necessary for
the first use of each single-character string. This approach
improves compression if relatively few different symbols occur
in each message.

However, he does not provide any further details on this method. My
tests in section 6.3 find that escaping improves compression effectiveness
even when using a byte alphabet. I therefore suspect Welch never
implemented escaping, as otherwise he would have likely mentioned
it more prominently in his paper. To the best of my knowledge, this
dissertation contributes the first implementation and evaluation of LZW
with escaping.

30 CHAPTER 5. LZW

Chapter 6

Evaluation

The effectiveness of a compression algorithm is the ratio between the size
of the compressed output and that of the uncompressed input. It is often
expressed in bits (of output) per byte (of input). Algorithms are typically
evaluated by measuring their effectiveness on a corpus of test data. The
use of a corpus allows compression results to be compared objectively. I
describe the corpus used in these tests in section 6.1.

Following sections present experimental results. I start by investigating
the effectiveness of different token distributions, in section 6.2. I then
measure their effectiveness when used as a base distribution for LZW, in
section 6.3, and for PPM, in section 6.4.

Appendix A includes several tables that may be useful while reading
this chapter. Table A.3 on page 66 briefly describes all the compressors
tested in this dissertation. A side-by-side comparison of the compression
effectiveness of these algorithms is given on pages 64 to 65.

31

32 CHAPTER 6. EVALUATION

6.1 Test data

6.1.1 Goals

The files in a corpus should be representative of the inputs that are likely
to be encountered when deployed. Given the focus of this dissertation,
UTF-8 texts should form the majority of the corpus. However, it is
important to capture the diversity of UTF-8 texts. One variable is the
language used in the text. Another important factor is the file format the
text is embedded in: e.g. plain text, HTML, or part of a tar archive.

In practice, it is inevitable that a specialised compression algorithm will
sometimes be required to compress other types of files. A text compressor
cannot be expected to perform as well on binary inputs, such as an
image or executable file, as a general-purpose compressor. However, it
is reasonable to expect that the text compressor does not fail, and that
it still achieves acceptable compression effectiveness. The corpus should
therefore include a small number of non-text files.

Furthermore, the corpus should contain files of a variety of sizes to reflect
real-world usage patterns. Tests on smaller files reveal how quickly the
model is able to learn, and the accuracy of its initial prior.

Finally, all files in the corpus must be freely redistributable. This
ensures others are able to reproduce the results in the dissertation. I
hope that the corpus I assemble can be used as the basis of future
experiments. Although there exist standard corpora for ASCII-encoded
English language text (discussed in the next section), there is currently no
equivalent for Unicode texts.

6.1.2 Files selected

The Canterbury corpus by Arnold and Bell (1997) has become a de facto
standard for evaluating compression methods. It consists of 11 files, listed

6.1. TEST DATA 33

File Size (bytes) Description

alice29.txt 152 089 Alice in Wonderland, English
asyoulik.txt 125 179 As you like it, Early Modern English
cp.html 24 603 HTML source, English
fields.c 11 150 C source
grammar.lsp 3721 LISP source
kennedy.xls 1 029 744 Excel spreadsheet
lcet10.txt 426 754 Technical writing, English
plrabn12.txt 481 861 Paradise lost, English poetry
ptt5 513 216 CCITT test set (fax)
sum 38 240 SPARC Executable
xargs.1 4227 GNU manual page, English

(a) The Canterbury corpus (Arnold and Bell 1997).

File Size (bytes) Description

Single language
beowulf.txt 160 140 Beowulf, Old English poetry
dostoevsky.txt 1 934 112 Crime and punishment, Russian novel
genji.txt 1 454 767 The tale of Genji, Japanese novel
genji02.txt 67 586 2nd chapter of The tale of Genji
kokoro.txt 484 562 Kokoro, Japanese novel
obiecana.txt 1 230 426 Ziemia obiecana, Polish novel

Mixed language
dictionary.txt 763 082 Chinese to English dictionary
license.html 37 319 Ukrainian legal text

Binary formats
kokoziem.tar 1 720 320 kokoro.txt and obiecana.txt

genji.tar 1 484 800 Chapters from The tale of Genji

(b) Foreign language texts (UTF-8 encoded). Available for download from
https: // github. com/ AdamGleave/ UnicodeCorpus .

Table 6.1: The test data used in my experiments.

https://github.com/AdamGleave/UnicodeCorpus

34 CHAPTER 6. EVALUATION

Group Files

ASCII alice29.txt, asyoulik.txt, cp.html, fields.c,
grammar.lsp, lcet10.txt, plrabn12.txt, xargs.1

Unicode dostoevsky.txt, genji.txt, genji02.txt, kokoro.txt
Mixed beowulf.txt, obiecana.txt, dictionary.txt, license.html
Binary kennedy.xls, ptt5, sum, genji.tar, kokoziem.tar

Table 6.2: The test files grouped by whether they are ASCII, Unicode with multi-
byte UTF-8 codewords, a mixture of the two, or binary.

in table 6.1a, chosen to be representative of likely compression inputs.
The majority of the files are textual: four are plain text (*.txt), two are
written in a markup language (cp.html and xargs.1) and two are source
code (fields.c and grammar.lsp). There are also three binary files,
consisting of a spreadsheet kennedy.xls, fax data ptt5 and executable
file sum.

Although the corpus has proven valuable, there is one aspect in which it
is lacking: all the textual data is in English. When the Canterbury corpus
was created in 1997, this may have been a reasonable decision, with
Pimienta et al. (2009, table 8) estimating that 75% of online content in 1998
was in English. By 2005, their calculations place foreign language content
as making up 55% of the web, overtaking English. Their estimations are
unreliable after 2005 due to an increasing bias towards English in search
indices, however the authors postulate the percentage of English language
content dropped to below 40% in 2007.

More recently, a survey conducted by W3Techs (2016c) in May 2016
found that 53.6% of websites were in English.1 This would seem to
suggest a reversal in the trend, however this figure is likely a significant
underestimate of the total foreign language content, due to a bias in the
demographics of Alexa toolbar users.

Although it remains difficult to determine precisely what proportion of

1As of 11th May, 2016. Based on a survey of the top ten million most popular websites
by Alexa rankings, from http://www.alexa.com.

http://www.alexa.com

6.1. TEST DATA 35

content on the web is in a foreign language, it is clearly substantial,
and likely greater than 50%. Given this, any corpus claiming to be
representative of today’s compression inputs should aim to have around
half of the text files be in a foreign language.

To this end, I have assembled a collection of non-English UTF-8 texts,
enumerated in table 6.1b. The texts span a range of languages: Beowulf
and Ziemia obiecana are Old English and Polish respectively, written in
an Extended Latin alphabet, giving a mixture of 1-byte and 2-byte UTF-8
codewords. Crime and punishment is in Russian (Cyrillic alphabet), and
consists of 2-byte UTF-8 codewords. The tale of Genji and Kokoro are both
Japanese, with 3-byte UTF-8 codewords. However, they are separated by
nine centuries, and are written in different alphabets: The tale of Genji
uses hiragana almost exclusively, whereas Kokoro is primarily written in
kanji.

Texts may contain multiple languages, for example the use of foreign
loanwords. The file dictionary.txt consists of 10,000 randomly selected
entries from CC-CEDICT, a Chinese-English dictionary.2 license.html is
the Ukrainian version of the Creative Commons license.3 Although the
text itself is solely Ukrainian, it is mixed with HTML tags, which for the
purposes of compression is similar to having multiple languages in the
same file.

Finally, text is often embedded in a binary format. I include two tar

archives (containing other files from the corpus) to test this case. Well-
designed compressors should have similar levels of effectiveness whether
compressing the original file or the tar archive.

The test data is summarised in table 6.2. Files are categorised as binaries
or texts, with texts grouped by their character encoding. The table shows
the corpus is well-balanced, with a similar number of ASCII texts to non-
ASCII (Unicode and mixed) texts.

2http://cc-cedict.org/.
3https://creativecommons.org/licenses/by/4.0/legalcode.uk

http://cc-cedict.org/
https://creativecommons.org/licenses/by/4.0/legalcode.uk

36 CHAPTER 6. EVALUATION

6.2 Single-symbol models

The compression effectiveness of the single-symbol models described in
chapter 3 is reported in table 6.3. The simplest model is the uniform byte
distribution UB, which unsurprisingly encodes at around 8 bits/byte.4 Of
more interest is the uniform token distribution UT, which places equal
probability on all N = 2, 164, 993 possible tokens. As expected, UT is
less effective than UB on binary files, encoding at around UT’s entropy of
log2 N ≈ 21.046 (3 dp).

Intriguingly, UT is also less effective than UB on many text files.
This result is because the files are encoded in UTF-8, which maps
Unicode characters with lower code points to shorter codewords.
Consequently, UB places more probability mass on characters that have
short codewords, which tend to occur more often in texts.

Consistent with this hypothesis, UT is more effective the longer the
codewords in the file. Indeed, it achieves a better compression ratio than
UB in the case of Japanese text (such as genji.txt and kokoro.txt) where
most characters have 3-byte codewords.

Both UB and UT are static distributions, remaining constant throughout
the compression process. I also include two adaptive methods: the
histogram learner outlined in section 3.1, and the Pólya tree learner
described in section 3.2.

Recall that the histogram learner keeps count of the number of times each
symbol has been observed. By contrast, a Pólya tree learner maintains a
balanced binary search tree. Each symbol is represented by a leaf node,
with internal nodes storing branching probabilities. The probability of

4The uniform byte distribution assigns equal probability mass to the 257 possible
outcomes: one of the 256 bytes, or an end of file symbol EOF. The compression
effectiveness therefore converges asymptotically to log2 257 = 8.006 bits/byte (3 dp).
However, on very small files such as fields.c and xargs.1, the effectiveness is slightly
worse than this.

6.2. SINGLE-SYMBOL MODELS 37

File Size Static Adaptive Reference
(KiB) UB UT HB HT PT SCSU gzip bzip2

alice29.txt 149 8.006 21.046 4.573 4.580 4.573 8.000 2.863 2.272
asyoulik.txt 122 8.006 21.046 4.814 4.822 4.814 8.000 3.128 2.529
cp.html 24 8.006 21.047 5.265 5.311 5.256 fail 2.598 2.479
fields.c 11 8.006 21.048 5.086 5.192 5.062 8.000 2.249 2.180
grammar.lsp 4 8.009 21.052 4.812 5.083 4.762 8.000 2.653 2.758
kennedy.xls 1006 8.006 21.045 3.576 3.580 3.575 fail 1.606 1.012
lcet10.txt 417 8.006 21.046 4.671 4.674 4.671 8.000 2.716 2.019
plrabn12.txt 471 8.006 21.046 4.533 4.536 4.533 8.000 3.241 2.417
ptt5 501 8.006 21.021 1.213 1.216 1.209 fail 0.880 0.776
sum 37 8.006 20.973 5.391 5.487 5.360 fail 2.703 2.701
xargs.1 4 8.009 21.051 5.057 5.288 5.013 8.000 3.308 3.335
beowulf.txt 156 8.006 19.319 4.623 4.080 4.073 7.547 2.974 2.221
dostoevsky.txt 1889 8.006 11.909 4.016 2.650 2.649 4.527 2.192 1.405
genji.txt 1421 8.006 7.118 4.277 2.302 2.289 3.946 2.430 1.545
genji02.txt 66 8.006 7.091 4.235 2.456 2.327 3.896 2.629 2.000
kokoro.txt 473 8.006 7.061 4.586 2.508 2.455 4.350 2.515 1.702
obiecana.txt 1202 8.006 19.607 4.891 4.441 4.440 7.751 3.150 2.276
dictionary.txt 745 8.006 17.821 5.845 5.146 5.026 7.743 4.071 2.916
license.html 36 8.006 12.960 4.807 3.532 3.474 4.940 1.899 1.502
genji.tar 1450 8.006 7.400 4.350 2.384 2.371 4.028 2.404 1.520
kokoziem.tar 1680 8.006 16.078 5.604 4.319 4.304 6.794 2.970 2.119

worse← → better

Table 6.3: Effectiveness of single-symbol compressors, over the test data in table 6.1. UB and
UT are uniform distributions over bytes and tokens respectively. HB and HT are histogram
learners (see section 3.1) with α set to 1 and a UB and UT base distribution respectively.
PT is a Pólya tree learner (see section 3.2) over tokens. SCSU is the Standard Compression
Scheme for Unicode described in section 2.2. gzip and bzip2 are included for comparison.
All figures are given to 3 decimal places. Each cell is shaded to indicate how good the
compression rate is relative to other compressors in the table. The best compressor in each
row is in bold.

38 CHAPTER 6. EVALUATION

a symbol x is the product of the branching probabilities along the path
from the root to the leaf node representing x.

The asymptotic behaviour of the Pólya tree and histogram learner are
the same. However, the hierarchical assumption made by the Pólya
tree allows it to learn the input distribution more quickly when the
probabilities of neighbouring symbols are similar.

Results are given for two histogram learners, HB and HT, of the form
given in section 3.1. The parameter α is set to 1, and their base distribution
is uniform over bytes (for HB) and tokens (for HT). On non-Unicode files,
HB slightly outperforms HT, with the difference narrowing the larger
the file. But HT has a significant edge on Unicode files. This is most
pronounced on files with many multi-byte codewords. For example, HT
is almost twice as effective as HB on genji.txt (containing mostly 3-byte
codewords).

The Pólya tree learner over tokens, PT, uses αi = βi = 1/2 at all nodes.
It is more effective than HT on small files such as fields.c, xargs.1 and
genji02.txt. But on larger files PT is typically less effective than HT. I
suspect this is because the hierarchical assumption of PT holds at a macro
scale, but not a micro scale.

The Unicode code space is divided into blocks: contiguous ranges
of related characters, such as the Cyrillic alphabet or mathematical
operators. Only a small number of blocks are used in typical Unicode
files, so at a macro scale the hierarchical assumption holds.5 This enables
the Pólya tree to quickly learn which blocks are used in a text, so PT
achieves greater compression effectiveness on small files than HT.

But the hierarchical assumption breaks down at a micro scale.
Neighbouring characters in a block do not necessarily have similar

5A simple monolingual text might use only a single block. More will be used in
multilingual texts, or in languages which make use of multiple alphabets, such as
Japanese. Texts that make use of Unicode symbols, such as mathematical operators,
will also require more blocks. However, it is difficult to imagine a non-pathological
example that would use more than a small fraction of the defined blocks.

6.3. LZW 39

probabilities. For example, ‘a’ and ‘\’ are adjacent in the Basic Latin block,
yet ‘a’ occurs far more frequently than ‘\’. Accordingly, the Pólya tree
learner is surprised more often within a block than the simpler histogram
learner. This explains why PT is less effective on large files than HT.

A Pólya tree learner can operate over bytes as well as tokens. However,
since there are only 256 bytes, in practice the results are indistinguishable
from the histogram learner of section 3.1. I therefore omit this case for
brevity.

For comparison, I include results from the Standard Compression Scheme
for Unicode (SCSU) described in section 2.2. It performs poorly, with even
the simplistic HB compressor being more effective on the majority of files
in the corpus. Furthermore, it fails on binary files and texts not encoded
in UTF-8.

I also give results for the general-purpose compression methods gzip
and bzip2. Unsurprisingly, these algorithms are usually more effective
than the simplistic single-symbol models. However, the power of the
token-based approach is demonstrated by the fact that even without any
contextual learning both HT and PT are more effective than gzip in the
case of Japanese text, such as genji.txt.

6.3 LZW

Compression algorithms traditionally encode individual bytes, but can
often be modified to operate over tokens. I extended LZW, a simple
dictionary coder described in section 5.1, to encode symbols from
arbitrary alphabets. My method escapes to a base distribution when
a symbol is first seen, and is described in section 5.2. I report the
compression effectiveness of LZW-family compressors in table 6.4, and
summarise the results in table 6.5.

40 CHAPTER 6. EVALUATION

File Size Original Escaped Reference
(KiB) LZC LZA LUB LUT LPT gzip bzip2

alice29.txt 149 3.274 3.164 3.154 3.161 3.154 2.863 2.272
asyoulik.txt 122 3.514 3.400 3.392 3.399 3.392 3.128 2.529
cp.html 24 3.680 3.537 3.512 3.559 3.511 2.598 2.479
fields.c 11 3.562 3.410 3.394 3.502 3.390 2.249 2.180
grammar.lsp 4 3.898 3.696 3.666 3.941 3.659 2.653 2.758
kennedy.xls 1006 2.412 2.414 2.413 2.418 2.415 1.606 1.012
lcet10.txt 417 3.058 2.955 2.951 2.953 2.951 2.716 2.019
plrabn12.txt 471 3.270 3.186 3.184 3.186 3.184 3.241 2.417
ptt5 501 0.970 0.937 0.936 0.947 0.942 0.880 0.776
sum 37 4.205 4.035 4.051 4.171 4.075 2.703 2.701
xargs.1 4 4.427 4.238 4.171 4.408 4.171 3.308 3.335
beowulf.txt 156 3.190 3.081 3.081 2.981 2.974 2.974 2.221
dostoevsky.txt 1889 2.282 2.080 2.078 1.790 1.789 2.192 1.405
genji.txt 1421 2.501 2.245 2.246 1.756 1.748 2.430 1.545
genji02.txt 66 2.996 2.891 2.878 2.312 2.238 2.629 2.000
kokoro.txt 473 2.679 2.601 2.599 2.002 1.974 2.515 1.702
obiecana.txt 1202 3.278 3.036 3.034 2.965 2.964 3.150 2.276
dictionary.txt 745 4.248 4.055 4.054 3.935 3.883 4.071 2.916
license.html 36 2.889 2.775 2.778 2.351 2.303 1.899 1.502
genji.tar 1450 2.435 2.212 2.213 1.734 1.726 2.404 1.520
kokoziem.tar 1680 3.191 3.057 3.056 2.814 2.806 2.970 2.119

worse← → better

Table 6.4: Effectiveness of LZW-family compressors, over the test data in
table 6.1. LZC (Frysinger et al. 2015) is a public domain implementation of
LZW, compatible with the Unix compress program (The Open Group 2013).
LZA is an alternative implementation using arithmetic coding (Steinruecken
2014). LUB, LUT and LPT are my escaped variants of LZA, using a uniform
byte, uniform token and Pólya token base distribution respectively. gzip and
bzip2 are not variants of LZW, but are included for comparison. All figures
are given to 3 decimal places. Each cell is shaded to indicate how good the
compression rate is relative to other compressors in the table. The best compressor
in each row is in bold.

6.3. LZW 41

Group LZA LUB LPT gzip bzip2

ASCII 3.448 3.428 3.426 2.844 2.499
Unicode 2.454 2.450 1.937 2.442 1.663
Mixed 2.964 2.964 2.747 2.674 2.000
Binary 2.531 2.534 2.393 2.113 1.625

Table 6.5: Mean compression effectiveness of LZW variants over the groups in
table 6.2. The best compressor in each row is in bold.

The original description of LZW suggests encoding dictionary indices
as a 12-bit number (Welch 1984). Greater compression effectiveness can
be achieved with variable-length codes. The Unix compress command,
denoted LZC, scales the number of bits b as the dictionary size N grows,
such that 2b−1 < N ≤ 2b. However, this is only optimal when b is a power
of two, wasting up to one bit otherwise. Compression effectiveness can
be substantially improved with arithmetic coding, used in LZA, which
encodes each index in log2 N bits.

In light of this advantage, I chose LZA as the basis for my escaped
implementation of LZW. Surprisingly, LUB – escaping to a uniform byte
base distribution – is usually more effective than LZA. I suspect this is
because the dictionary in LUB is shorter, as it does not contain unseen
bytes. This makes the common case – encoding a byte or sequence of
bytes that has already been observed – cheaper, since the range of indices
is smaller. However, encoding a byte for the first time becomes more
expensive.

As a result, LUB is typically more effective than LZA on files which use a
limited range of bytes, such as ASCII texts. On binary files, the methods
are comparable, and LZA is sometimes more effective than LUB such as
with the file sum.

However, the real benefit of this technique comes from the ability to use
a token alphabet (rather than bytes) and to choose a base distribution.
I test two compressors, LUT and LPT, developed by modifying LZA to

42 CHAPTER 6. EVALUATION

escape to a (static) uniform token distribution and an (adaptive) Pólya
tree learner respectively.

On Unicode files, both LUT and LPT substantially outperform byte-based
compressors LUB and LZA. In the case of Japanese texts genji.txt,
genji02.txt and kokoro.txt, the compression effectiveness is around
0.5 bits/byte greater for the token-based approach.

Of course, this comes at a cost on non-Unicode files. The uniform token
distribution places less probability mass on ASCII characters than does
the uniform byte distribution.6 This makes escaping ASCII characters
more expensive. However, each symbol is escaped at most once, so
the overhead is only significant on small files such as grammar.lsp and
xargs.1.

LPT achieves greater compression effectiveness than LUT on every
file. This strongly supports the use of an (adaptive) Pólya tree base
distribution rather than a (static) uniform base distribution over tokens.
The Pólya tree is able to reduce the cost of escaping by more rapidly
learning which blocks of characters are present in a file.

Although LZW is still widely used today – most notably in the Unix
compress utility and the GIF file format – more modern approaches such
as gzip and bzip2 are typically more effective. Despite this handicap,
LPT is more effective than gzip on all but one of the single-language
Unicode text files.7 In the next section, I evaluate the use of a token-
based approach with a more sophisticated compression algorithm, PPM.

6Note that the Pólya tree learner’s initial predictive distribution is uniform over
tokens, although it will over time adapt based on the frequency counts.

7The single-language Unicode files are beowulf.txt, dostoevsky.txt, genji.txt,
genji02.txt, kokoro.txt and obiecana.txt. The compression effectiveness of LPT
is comparable to gzip on beowulf.txt, and is substantially better than gzip on the
other files. The key determinant is the proportion of multi-byte codewords in the
file. This explains why LPT fares comparatively worse on the mixed-language texts
dictionary.txt and license.html, which have a high proportion of ASCII characters.

6.4. PPM 43

6.4 PPM

The PPM algorithm makes predictions from context-sensitive frequency
counts. When a symbol is first seen in a context, the algorithm backs-off
to a shorter context. In the special case that a symbol has never before
occurred in the file, the algorithm will back-off to a base distribution over
the symbol alphabet. In this section, I investigate the usage of a token
alphabet with a uniform or Pólya tree base distribution. See chapter 4 for
more information on PPM.

PPM has a number of parameters that can affect compression
effectiveness, which I selected by optimising over training data. I start
by describing my methodology in section 6.4.1. Next, I report the optimal
parameters found in section 6.4.2. Following this, in section 6.4.3 I explore
the degree to which the results are sensitive to parameter choice. Finally,
in section 6.4.4 I report the compression effectiveness on unseen test
data using the previously selected parameters, including a comparison
to current state-of-the-art compressors.

6.4.1 Selecting parameters

In my tests I used the PPMG variant of PPM, which is parametrised
by a maximal context depth d, a discount parameter β ∈ [0, 1] and
a concentration parameter α ∈ [−β, ∞).8 Although in principle it is
possible to optimise these parameters for each file compressed, this is
computationally expensive and in practice they are usually set to be
constants. To select the parameters, I ran an optimisation procedure over
the training corpus given in table 6.6.

The training data consists of texts in a variety of languages. Although the
algorithm may sometimes need to compress binary files, it is acceptable

8See section 4.3 for a more detailed description of PPMG and my reasons for choosing
this method.

44 CHAPTER 6. EVALUATION

File Size
(bytes)

Description

aristotle.txt 437 499 The constitution of the Athenians, Greek
austen.txt 697 801 Pride and prejudice, English
confucius.txt 68 762 Lunyu, Chinese
doyle.txt 574 997 The adventures of Sherlock Holmes, English
forsberg.txt 217 247 Svensk litteraturhistoria, Swedish
gogol.txt 703 077 Evenings on a farm near Dikanka, Russian
jushi.txt 265 117 Tou peng hsien hua, Chinese
rizal.txt 832 432 Ang “filibusterismo”, Tagalog
russel.html 645 570 The foundations of geometry, English
shimazaki.txt 723 482 The broken commandment, Japanese

Table 6.6: Training data used to select parameters for PPM. Available
for download at https: // github. com/ AdamGleave/ MPhilProject/ tree/
master/ src/ test/ resources/ corpora/ training .

for the compression effectiveness to be worse in such cases, so I chose
not to include any binary files in the training corpus. This is in contrast
to the test data in section 6.1 where having a variety of file types was
an explicit goal. Otherwise, the selection criteria for the two corpora are
similar.

To find the parameters, I minimised the mean of the ratio of compressed
output size to original input size over the training corpus. Note that this
objective function gives equal weight to every file, regardless of its size.
The optimisation was conducted independently for each d ∈ {1, · · · , 9}.
A 10× 10 grid search over α ∈ [−1, 3] and β ∈ [0, 1] was performed to
find an initial guess. Nelder–Mead was used to refine this to an optimal α

and β (Nelder and Mead 1965). Finally, the (d, α, β) triple with the lowest
mean was selected as the optimum.

https://github.com/AdamGleave/MPhilProject/tree/master/src/test/resources/corpora/training
https://github.com/AdamGleave/MPhilProject/tree/master/src/test/resources/corpora/training

6.4. PPM 45

Alphabet Base d αopt βopt Effectiveness
(bits/byte)

Byte Uniform 5 0.176 0.392 2.036
Byte Uniform 6∗ 0.095 0.409 2.016
Token Uniform 5∗ 0.001 0.513 1.951
Token Uniform 6 -0.050 0.520 1.969
Token Pólya 5∗ 0.001 0.513 1.938
Token Pólya 6 -0.050 0.521 1.956

Table 6.7: The optimal (α, β) over the training data, at a given depth, for each
alphabet and base distribution tested. Optimal depths are marked with ∗. Tests
were conducted for d ∈ {1, · · · , 9} but for brevity I only report on depths which
were optimal for at least one alphabet-base pair. Effectiveness is the mean bits of
compressed output per byte of input over the training data. All figures are given
to 3 decimal places.

6.4.2 Optimal parameters

Table 6.7 reports the parameters I found to maximise compression
effectiveness over the training corpus. The parameters are sensitive to the
alphabet used, but not the choice of base distribution, with the optimal
parameters for a uniform and Pólya base distribution over tokens equal
to 3 decimal places.

When the variability in the number of unique symbols U between files
is greater, the optimal value of β tends to be larger, as explained in
section 4.3.2. With a token alphabet, U is equal to the number of
characters used in the file. For a typical English text, this might be less
than a hundred characters. But in a language such as Chinese, many
thousands of characters could be used.

By contrast, the number of unique bytes in a file is of course at most 256.
Consequently, U varies substantially more between files when using a
token alphabet rather than a byte alphabet. This property explains why
βopt is around 0.1 higher for the compressors using token alphabets.

I found the optimal maximum context depth d to be six bytes and five

46 CHAPTER 6. EVALUATION

0 2 4 6 8
Maximal context depth d

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5
C

om
pr

es
si

on
ef

fe
ct

iv
en

es
s

(b
it

s/
by

te
)

UB on 1-byte codewords
UT on 1-byte codewords
UB on 2-byte codewords
UT on 2-byte codewords
UB on 3-byte codewords
UT on 3-byte codewords

Figure 6.1: The effect of maximal context depth d on the compression effectiveness
of PPM. UB and UT denote the use of a uniform base distribution over bytes
and tokens respectively. The training data is partitioned into groups, given in
table 6.8, based on the length of the UTF-8 codewords in each file. The mean
effectiveness is reported for each group. Diamond markers denote the optimal
depth for that compressor-group pair.

Group dUB
opt

(bytes)
dUT

opt
(tokens)

dUT
opt

(bytes)
Training files

1-byte 5 5 5× 1 = 5 austen.txt, doyle.txt,
forsberg.txt, rizal.txt,
russel.html

2-byte 8 4 4× 2 = 8 aristotle.txt, gogol.txt
3-byte 6 2 2× 3 = 6 confucius.txt, jushi.txt,

shimazaki.txt

Table 6.8: Membership of the groups in figure 6.1, with the optimal depth for the
uniform byte and token base distributions UB and UT.

6.4. PPM 47

tokens respectively. A Unicode character is represented by a single token,
but takes between one to four bytes to encode in UTF-8. Five tokens will
therefore correspond to substantially more than six bytes on files with a
high proportion of multi-byte codewords.

Figure 6.1 explores how compression effectiveness varies with depth d.
The results reported are the mean compression effectiveness over sets of
texts, grouped in table 6.8 by the typical UTF-8 codeword length present
in the files. The tests were performed on PPM with a uniform base
distribution over bytes (UB) and tokens (UT).9 Each compressor was run
with the (α, β) pair that maximised compression effectiveness over the
training data at that depth.

The 1-byte group consists of files containing predominantly ASCII
characters.10 The results for UB and UT are almost identical, since each
ASCII character is both a single token and single byte. In the 2-byte and
3-byte groups, UB benefits from a larger value of d than UT. However,
the optimal depth d is the same number of bytes in both cases.

Intriguingly, the optimal context depth d is larger for the 2-byte group
than for the 3-byte group, over both UB and UT. This apparent
paradox hints at a more subtle invariant: depth in terms of information
content.

The 2-byte group consists of Russian and Greek text, which has a
similar information content per character to English. By contrast, the
3-byte group is formed of Chinese and Japanese text, where individual
characters can represent entire words, and so may therefore have a much
greater information content. Accordingly, the optimal depth (in tokens)
is much less than for the other two groups.

9Using the Pólya tree learner as a base distribution was also tested, but I omit the
results as they were extremely similar to UT.

10forsberg.txt, rizal.txt and russel.html contain a small number of 2-byte
codewords.

48 CHAPTER 6. EVALUATION

6.4.3 Robustness of parameters

Previously, I reported the parameters that are optimal for the training
data, and discussed why these parameters are optimal. In the next
section, I will investigate the compression effectiveness of PPM using
these parameters on test data. Before this, it is worth ensuring the
parameters selected are reasonable. I will start by testing how close the
parameters are to optimality, and then investigate the degree to which
PPM is sensitive to parameter choice.

Table 6.9 shows the parameters optimal for the training data, to the left,
and the test data, to the right. There is a slight variation, but overall they
agree fairly closely. d is always the same, α differs by at most 0.052 and β

by at most 0.015.

The impact of these parameters on compression effectiveness is shown
in table 6.10. The column ∆ē gives the reduction in mean effectiveness
over the textual test data due to the use of sub-optimal parameters. This
decrease in effectiveness is at most 0.01 bits/byte, small compared to the
variation between different compression algorithms.

In light of this, the parameters chosen from the training data are clearly a
good fit for the test data. As the training data was chosen independently
of the test data, and differs in many important characteristics such as the
languages present, this suggests the method of choosing parameters is
reasonably robust. However, it is possible – although unlikely – that this
is simply good fortune. It is therefore worth investigating how sensitive
the compression effectiveness of PPM is to parameter choice.

The relationship between effectiveness and depth d is shown in figure 6.1
from the previous section. Note the curve is relatively flat in the region
surrounding the optimum. Picking a depth one too high or too low would
therefore incur a relatively small penalty. This result is confirmed by
table 6.11, with the penalty never exceeding 0.07 bits/byte, and frequently
much lower.

6.4. PPM 49

Alphabet Prior dopt
TR α

opt
TR β

opt
TR dopt

TE α
opt
TE β

opt
TE

Byte Uniform 6 -0.105 0.478 6 -0.100 0.476
Token Uniform 4 -0.059 0.498 4 -0.0124 0.484
Token Pólya 4 -0.065 0.499 4 -0.0130 0.484

Table 6.9: The optimal (d, α, β), over the training and textual test data, denoted
by superscript TR and TE respectively. The training data is listed in table 6.6,
and the textual test data is the ASCII, Unicode and mixed groups of table 6.2.
All figures are given to 3 decimal places.

Alphabet Prior ēTE ēTR ∆ē due to d due to α, β

Byte Uniform 2.072 2.075 0.00290 0.00000 0.00290
Token Uniform 2.080 2.087 0.00611 0.00296 0.00315
Token Pólya 2.023 2.029 0.00609 0.00297 0.00312

Table 6.10: The effect of parameter choice on compression effectiveness. ēD is
the mean compression effectiveness, in bits/byte, over the textual test data. If
D = TR, the parameters were optimised over the training data; if D = TE, the
textual test data was used. The optimal parameters in each case are given in
table 6.9. ∆ē is the amount by which ēTE outperforms ēTR. The following two
columns break this down into the amount lost from using sub-optimal depth, and
from a sub-optimal (α, β) pair. This is computed by running the compressor with
depth optimal on the test data but using the (α, β) optimal at that depth on the
training data.

Alphabet Prior d = dTE
opt ēTE

d−1 ēTE
d ēTE

d+1

Byte Uniform 6 2.095 (+0.023) 2.072 2.086 (+0.014)
Token Uniform 4 2.147 (+0.066) 2.080 2.084 (+0.004)
Token Pólya 4 2.135 (+0.066) 2.069 2.072 (+0.004)

Table 6.11: PPM compression effectiveness against depth. d = dTE
opt is the optimal

depth on the textual test data. ēTE
n is the mean effectiveness on the textual test

data, with PPM set to depth n using the optimal (α, β) at that depth.

50 CHAPTER 6. EVALUATION

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
discount β

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

st
re

ng
th

α

TE

TR PPMD

2.09

2.1

2.2

2.3

2.4

2.5 2.6 2.7

2.8

2.9

3.0

Figure 6.2: Contour plot of compression effectiveness in bits/byte against α and β.
The compressor is PPM over a byte alphabet with a uniform base distribution and
d = 6. Contour heights represent the mean compression effectiveness over the
textual test data. TR and TE mark the parameters optimal over the training data
and textual test data respectively. PPMD marks the parameters recommended by
Howard (1993). The region of invalid parameters, α + β < 0, is shaded in grey.

6.4. PPM 51

Figure 6.2 gives a contour plot of the mean effectiveness, ē, against
α and β. The compressed size in bits/byte climbs gradually away
from the optimum (marked TE). This shows that a wide range of
parameters can achieve high compression effectiveness. Indeed, the
PPMD parameters suggested by Howard (1993) are a mere 0.008 bits/byte
from the optimum, and so lie within the innermost contour.

To conclude, I have found that PPM is reasonably robust to parameter
choice, achieving high compression effectiveness over a range of
parameter settings. This confirms the exact choice of training data used
to choose parameters is unimportant, provided it is broadly similar to
the test data. Furthermore, my experiments show that the parameters
selected in table 6.7 achieve close to optimal performance on the (unseen)
test data.

6.4.4 Effectiveness of the token compressor

In this section, I test the hypothesis that a token-based alphabet improves
PPM’s compression effectiveness. My control is PUB, PPM over a byte
alphabet with a uniform base distribution. The experimental algorithms
are PUT and PPT, which use the same algorithm as PUB but over a token
alphabet with a uniform and Pólya tree base distribution respectively. I
set the parameters (d, α, β) to the values in table 6.7, found by optimising
over the training data. The results for these and other algorithms
(discussed in the following section) are reported in table 6.12.

It is immediately apparent that a Pólya base distribution is superior
to a uniform base distribution over tokens, with PPT achieving greater
compression effectiveness than PUT on every test file. I will therefore
only consider PPT in subsequent discussion.

PPT outperforms PUB on Unicode files (the second and third group in the
table) in seven out of eight cases. The file where PUB wins, beowulf.txt,

52 CHAPTER 6. EVALUATION

File Size PPM Reference
(KiB) PUB PUT PPT P5B PPMII CMIX PAQ bzip2

alice29.txt 149 2.203 2.189 2.182 2.173 2.101 1.792 1.720 2.272
asyoulik.txt 122 2.502 2.469 2.461 2.457 2.340 2.062 1.964 2.529
cp.html 24 2.312 2.339 2.291 2.305 2.174 1.843 1.685 2.479
fields.c 11 2.073 2.199 2.087 2.085 1.963 1.558 1.554 2.180
grammar.lsp 4 2.408 2.677 2.395 2.402 2.307 2.002 1.881 2.758
kennedy.xls 1006 1.586 1.475 1.471 1.503 0.919 0.067 0.135 1.012
lcet10.txt 417 1.946 1.934 1.931 1.922 1.897 1.523 1.442 2.019
plrabn12.txt 471 2.364 2.317 2.314 2.302 2.238 1.974 1.925 2.417
ptt5 501 0.824 0.822 0.817 0.821 0.781 0.342 0.645 0.776
sum 37 2.734 2.842 2.746 2.743 2.469 1.535 1.764 2.701
xargs.1 4 2.992 3.202 2.966 2.977 2.869 2.604 2.343 3.335
beowulf.txt 156 2.185 2.220 2.213 2.222 2.202 1.720 1.878 2.221
dostoevsky.txt 1889 1.426 1.273 1.273 1.584 1.677 1.113 1.342 1.405
genji.txt 1421 1.452 1.399 1.391 1.601 1.656 1.284 1.433 1.545
genji02.txt 66 1.999 1.923 1.850 2.047 1.983 1.770 1.845 2.000
kokoro.txt 473 1.658 1.600 1.572 1.754 1.747 1.446 1.559 1.702
obiecana.txt 1202 2.128 2.111 2.110 2.110 2.146 1.781 1.839 2.276
dictionary.txt 745 2.864 2.831 2.779 2.822 2.745 2.040 2.066 2.916
license.html 36 1.475 1.448 1.400 1.549 1.559 1.167 1.261 1.502
genji.tar 1450 1.427 1.375 1.367 1.572 1.626 1.259 1.406 1.520
kokoziem.tar 1680 1.993 1.967 1.958 2.007 2.029 1.681 1.754 2.119

worse← → better

Table 6.12: Effectiveness of PPM-family compressors, over the test data in table 6.1. PUB,
PUT, PPT, P5B use a uniform byte, uniform token, Pólya token and uniform byte base
distribution respectively. The parameters (d, α, β) were set to the values in table 6.7, found
by optimising over the training data. For P5B, d was forced to 5, with (α, β) taken from
the table. As a within-family comparison, I include PPMII, a state-of-the-art PPM-based
compressor.

For comparative evaluation, I give results for CMIX and PAQ (short for paq8hp12any),
two highly effective (though comparatively slow) ensemble compressors. Finally, I include
bzip2, for ease of comparison with previous tables.

All figures are given to 3 decimal places. Each cell is shaded to indicate how good
the compression rate is relative to other compressors in the table. The best compressor in
each row is in bold.

6.4. PPM 53

is unusual as it is predominantly ASCII, with only 8.9% of its characters
coming from other Unicode blocks.

Surprisingly, the token-based compressors were more effective than the
control PUB even on the Canterbury corpus (the first group in the table),
winning in six out of eleven cases. I suspect this is because PUB uses a
depth of six, whereas PPT use a depth of five, which figure 6.1 shows is
optimal on ASCII files. PUB needs the longer depth to accommodate files
with multi-byte codewords. PPT faces less pressure, as the use of a token
alphabet reduces the variation in optimal context depth.

Indeed, I find that P5B – like PUB, but with a depth of five – beats
PPT compressors on ten out of eleven Canterbury files. However, its
performance over Unicode files is substantially worse than both PUB and
PPT.

PPM is a highly successful compression algorithm, and many variants
have been developed. PPMII is a particularly sophisticated modification,
with state-of-the-art performance on text. It outperforms all of my
compressors on every file of the Canterbury corpus. But on Unicode,
PPT outperforms PPMII in six out of eight cases, and often by a very
substantial margin. Interestingly, PUB also outperforms PPMII in most
cases on Unicode text (although by a slimmer margin), suggesting that
PPMII has been tuned for English-language texts at the expense of other
languages.

Overall, I would conclude that the use of a token-based alphabet improves
the compression effectiveness of PPM over a mixture of ASCII and
Unicode texts. PPT outperforms PUB on almost all Unicode texts, and
most ASCII texts. Variants of PPM which have been tuned for ASCII
texts, such as P5B and PPMII, can outperform PPT on ASCII but pay a
significant penalty on Unicode texts.

54 CHAPTER 6. EVALUATION

Group PUB PPT PPMII CMIX PAQ

ASCII 2.350 2.328 2.236 1.920 1.814
Unicode 1.634 1.521 1.766 1.403 1.545
Mixed 1.930 1.907 1.969 1.556 1.659
Binary 1.713 1.672 1.565 0.977 1.141

Table 6.13: Mean compression effectiveness of PPM variants over the groups in
table 6.2. The best compressor in each row is in bold.

Comparative evaluation

Previously, I compared variants of PPM to each other, finding PPT to be
best. In this section, I test PPT against state-of-the-art compressors CMIX
and PAQ. I find PPT to be somewhat less effective than these compressors,
but substantially more efficient, completing in a fraction of the time with
a considerably smaller memory footprint.

cmix v9 (abbreviated CMIX) and paq8hp12any (abbreviated PAQ) come
first and second place in a comprehensive text benchmark by Mahoney
(2016a).11 CMIX is also ranked first in tests over the Silesia corpus,
containing a mixture of text and binary files (Deorowicz 2003; Mahoney
2016b).

Both algorithms make single-bit predictions by combining the output
from an ensemble of independent models, a technique sometimes called
context mixing. PAQ has been tuned for English-language text, and is the
best compressor in table 6.12 on all English-language files. CMIX is more
versatile, using a total of 1740 independent models, including many of
those from PAQ. It is the best compressor in table 6.12 for binary and
Unicode files.

I summarise the results in table 6.13. On ASCII files, PAQ achieves a
mean compression effectiveness of 1.814, 0.422 bits/byte better than the

11By the compressed size of enwiki8, the first 10 MiB of English-language Wikipedia.
Results last updated May 5th, 2016. I exclude durilca'kingsize, which is specialised
for the benchmark and is unable to compress files other than enwiki.

6.4. PPM 55

most effective PPM variant, PPMII. On Unicode texts, my PPM variant
PPT just beats PAQ by a 0.010 bits/byte margin. But CMIX is the overall
winner, outperforming PPT by 0.132 bits/byte. This gap is substantially
smaller than the performance difference on ASCII, confirming the benefit
from using a token-based alphabet. Furthermore, this suggests that CMIX
and PAQ might benefit from being modified to incorporate knowledge of
UTF-8.

So far, the focus of this evaluation has been on compressor effectiveness:
the degree to which the input file size can be shrunk. But efficiency, how
economical the algorithm is in time and space, is of considerable practical
importance. To some extent, it is always possible to improve effectiveness
at the cost of a longer runtime and larger memory footprint.

Figure 6.3 shows the time and memory taken to compress and
decompress the genji02.txt test file.12 The tests were conducted on
a machine with specification given in appendix A.2. genji02.txt was
read once before running any compressors, to ensure it was present in
cache. The test was repeated 20 times, to reduce the effect of random
variation. Compressors were run round-robin (i.e. each replication ran
every compressor) so that if system performance varied over time all
compressors would be equally affected.

The runtime reported is wall-clock time, a measure of the real time taken
for the process to complete. This is as opposed to CPU time, the duration
the process actually spends executing. I selected wall-clock time as it is
the least biased metric. However, it is higher variance than CPU time,
being affected by concurrently running processes. To mitigate this, I
performed the experiments on a machine that was otherwise idle, and
only ran one compressor at a time.

Memory consumption is measured by the maximum resident set size of

12I conducted tests on other files, finding runtime to be approximately proportional
to file size, and memory consumption to be mostly unchanged. The rankings of the
algorithms remained the same in all cases. For brevity, I therefore report on just one file.

56 CHAPTER 6. EVALUATION

PUB PPT PPMII CMIX paq
Compressor

10−2

10−1

100

101

102

103
R

un
ti

m
e

(s
)

1.4 s
2.8 s

62.7 ms

122.1 s

43.2 s

(a) Time to completion (wall-clock time), base-10 log scale.

PUB PPT PPMII CMIX paq
Compressor

214

215

216

217

218

219

220

221

222

223

224

225

M
em

or
y

(B
)

134.0 MiB 139.2 MiB

28.9 MiB

15.3 GiB

1.7 GiB

(b) Maximum memory usage (resident set size), base-2 log scale.

Figure 6.3: Resource consumption compressing then decompressing
genji02.txt. The heights of the bars represent the mean result over 20
replications, and the blue whiskers the standard error. Note the log scale
necessary due to the large variation in compressor performance. The tests were
conducted on a machine with specification described in appendix A.2.

6.4. PPM 57

the process.13 This is the largest amount of main memory (RAM) used by
the process throughout its execution. Equivalently, it is the total amount
of available RAM needed for the program to complete successfully. Note
the program’s virtual address space can be larger,14 but any pages not
resident in memory must have never been accessed by the program, since
swap was disabled on the test machine.

It is immediately apparent that the increased effectiveness of CMIX and
PAQ comes at a heavy cost in efficiency. CMIX takes 45× longer than PPT
and uses 113× as much memory. PAQ is slightly more economical, taking
just 16× as long and 12× as much memory. These results are particularly
striking since PPT is an unoptimised implementation of PPM intended
only for research.

PPMII shows what is possible with some intensive code profiling,
running 21.8× faster than PPT and over 1900× faster than CMIX. The
use of a token-based alphabet hurts PPM’s performance slightly, with
PPT around 2× as slow as PUB. Yet even if an optimised implementation
of PPT were only within 4× PPMII’s speed, it would still be almost 500×
faster than CMIX.

To conclude, PPT offers state-of-the-art performance on Unicode text
amongst algorithms with comparable resource consumption. My
implementation was intended for research only and is likely too slow for
many practical purposes, but optimised implementations such as PPMII
show that PPM can have excellent performance. Ensemble compressors
using orders of magnitude more CPU and memory outperform PPT,
although there is reason to believe these compressors would also benefit
from incorporating a token-based approach, the key contribution of this
dissertation.

13As reported in the field ru_maxrss by getrusage on the Linux kernel.
14Indeed, CMIX consumes around 24 GiB of virtual memory, but only around 16 GiB

physical.

58 CHAPTER 6. EVALUATION

Chapter 7

Conclusions

7.1 Summary

The majority of text online is currently encoded in UTF-8, and this
situation is unlikely to change in the foreseeable future. There is therefore
a clear utility in the ability to compress such data effectively. Existing
methods, such as SCSU and BOCU-1, fall short on two counts: they can
only compress Unicode data, and are less effective than general-purpose
compressors such as bzip2.

In this dissertation, I have shown a method for modifying general-
purpose compressors to operate over Unicode characters and error
tokens. I applied this technique to LZW and PPM (two very different
compressors) and found it improves their effectiveness on multilingual
UTF-8 files substantially, as shown in tables 6.5 and 6.13. Furthermore,
PPT (my version of PPM) is more effective than PPMII (a state-of-the-art
variant of PPM) on selected files. PPT is slightly less effective than the
ensemble compressor CMIX, but runs 40× faster.

My source code and datasets are open-source and available at
https://github.com/AdamGleave/MPhilProject. In the next section, I
discuss directions for further work.

59

https://github.com/AdamGleave/MPhilProject

60 CHAPTER 7. CONCLUSIONS

7.2 Future work

7.2.1 Optimised implementation

The focus of this dissertation has been on compression effectiveness: how
much the file can be shrunk. But the efficiency of an implementation –
how economical it is with computational resources – is of considerable
practical importance.

Optimised implementations of PPM, such as PPMII, are almost as
efficient as widely-used compressors like bzip2.1 Porting my approach
to an implementation such as PPMII seems likely to yield a compressor
that is both highly efficient and effective over UTF-8 text.

7.2.2 Applications to other algorithms

I have demonstrated that modifying LZW and PPM to operate over
Unicode characters and error tokens substantially improves their
compression effectiveness on UTF-8 text. LZW and PPM have radically
different designs, so it seems likely that a broad range of compressors
might benefit from this technique. However, further work is required to
verify this.

7.2.3 Compression of other data formats

My implementations of LZW and PPM can operate over any countable
alphabet of tokens given a corresponding base distribution. In this
dissertation, I used an alphabet of Unicode tokens, and a Pólya tree base
distribution (taking advantage of Unicode’s block-based layout).

1The Large text compression benchmark finds that PPMII takes 880 s to compress a
100 MiB file compared to bzip2’s 379 s (Mahoney 2016a).

7.2. FUTURE WORK 61

Compressors optimised for other data formats can be built by selecting
an appropriate alphabet and base distribution. For example, a
compressor for executable files could use an alphabet of machine
language instructions. The base distribution could be chosen based on
observed frequencies of different instructions in a training corpus.

Ideally, a general-purpose compressor should be able to adapt to
individual data formats, eliminating the need for such explicit models.
However, the currently most effective general-purpose compressors
use ensemble models, combining predictions from a large number of
specialised models.

Ensemble compressors can achieve excellent compression effectiveness,
but are extremely resource intensive. If my technique is as successful
with other data formats as it has been for UTF-8 text, then the
resulting specialised compressors may be almost as effective as ensemble
compressors over files of the target data format, while being orders of
magnitude more efficient.

62 CHAPTER 7. CONCLUSIONS

Appendix A

Test results

A.1 Compression effectiveness

My evaluation, in chapter 6, includes tables reporting the effectiveness
of particular families of compressors. This makes it straightforward to
compare performance within-family, but it can be hard to see the broader
perspective. As an alternative, in tables A.1 and A.2 I give results for all
the compressors tested in this dissertation, listed in table A.3.

A.2 Machine specification

The resource consumption tests in section 6.4.4 were conducted on a
machine with:

• 2× Intel Xeon X5560 CPU. Each has 4 physical cores, running at
2.8 GHz.

• 47 GiB of system memory.

• GNU/Linux (Ubuntu 14.04 Trusty operating system, 2014).

63

64 APPENDIX A. TEST RESULTS

File Size Static Adaptive LZW
(KiB) UB UT HB HT PT LZC LZA LUB LUT LPT

alice29.txt 149 8.006 21.046 4.573 4.580 4.573 3.274 3.164 3.154 3.161 3.154
asyoulik.txt 122 8.006 21.046 4.814 4.822 4.814 3.514 3.400 3.392 3.399 3.392
cp.html 24 8.006 21.047 5.265 5.311 5.256 3.680 3.537 3.512 3.559 3.511
fields.c 11 8.006 21.048 5.086 5.192 5.062 3.562 3.410 3.394 3.502 3.390
grammar.lsp 4 8.009 21.052 4.812 5.083 4.762 3.898 3.696 3.666 3.941 3.659
kennedy.xls 1006 8.006 21.045 3.576 3.580 3.575 2.412 2.414 2.413 2.418 2.415
lcet10.txt 417 8.006 21.046 4.671 4.674 4.671 3.058 2.955 2.951 2.953 2.951
plrabn12.txt 471 8.006 21.046 4.533 4.536 4.533 3.270 3.186 3.184 3.186 3.184
ptt5 501 8.006 21.021 1.213 1.216 1.209 0.970 0.937 0.936 0.947 0.942
sum 37 8.006 20.973 5.391 5.487 5.360 4.205 4.035 4.051 4.171 4.075
xargs.1 4 8.009 21.051 5.057 5.288 5.013 4.427 4.238 4.171 4.408 4.171

beowulf.txt 156 8.006 19.319 4.623 4.080 4.073 3.190 3.081 3.081 2.981 2.974
dostoevsky.txt 1889 8.006 11.909 4.016 2.650 2.649 2.282 2.080 2.078 1.790 1.789
genji.txt 1421 8.006 7.118 4.277 2.302 2.289 2.501 2.245 2.246 1.756 1.748
genji02.txt 66 8.006 7.091 4.235 2.456 2.327 2.996 2.891 2.878 2.312 2.238
kokoro.txt 473 8.006 7.061 4.586 2.508 2.455 2.679 2.601 2.599 2.002 1.974
obiecana.txt 1202 8.006 19.607 4.891 4.441 4.440 3.278 3.036 3.034 2.965 2.964

dictionary.txt 745 8.006 17.821 5.845 5.146 5.026 4.248 4.055 4.054 3.935 3.883
license.html 36 8.006 12.960 4.807 3.532 3.474 2.889 2.775 2.778 2.351 2.303

genji.tar 1450 8.006 7.400 4.350 2.384 2.371 2.435 2.212 2.213 1.734 1.726
kokoziem.tar 1680 8.006 16.078 5.604 4.319 4.304 3.191 3.057 3.056 2.814 2.806

worse← → better

Table A.1: Compression effectiveness in bits/byte, over the test data in table 6.1. See table A.2 on opposite
page for remaining results. All figures are given to 3 decimal places. Each cell is shaded to indicate how
good the compression rate is relative to other compressors in the table. The best compressor in each row
is in bold.

A.2. MACHINE SPECIFICATION 65

PPM Reference File Size
PUB PUT PPT P5B PPMII SCSU gzip bzip2 CMIX PAQ (KiB)

2.203 2.189 2.182 2.173 2.101 8.000 2.863 2.272 1.792 1.720 149 alice29.txt

2.502 2.469 2.461 2.457 2.340 8.000 3.128 2.529 2.062 1.964 122 asyoulik.txt

2.312 2.339 2.291 2.305 2.174 fail 2.598 2.479 1.843 1.685 24 cp.html

2.073 2.199 2.087 2.085 1.963 8.000 2.249 2.180 1.558 1.554 11 fields.c

2.408 2.677 2.395 2.402 2.307 8.000 2.653 2.758 2.002 1.881 4 grammar.lsp

1.586 1.475 1.471 1.503 0.919 fail 1.606 1.012 0.067 0.135 1006 kennedy.xls

1.946 1.934 1.931 1.922 1.897 8.000 2.716 2.019 1.523 1.442 417 lcet10.txt

2.364 2.317 2.314 2.302 2.238 8.000 3.241 2.417 1.974 1.925 471 plrabn12.txt

0.824 0.822 0.817 0.821 0.781 fail 0.880 0.776 0.342 0.645 501 ptt5

2.734 2.842 2.746 2.743 2.469 fail 2.703 2.701 1.535 1.764 37 sum

2.992 3.202 2.966 2.977 2.869 8.000 3.308 3.335 2.604 2.343 4 xargs.1

2.185 2.220 2.213 2.222 2.202 7.547 2.974 2.221 1.720 1.878 156 beowulf.txt

1.426 1.273 1.273 1.584 1.677 4.527 2.192 1.405 1.113 1.342 1889 dostoevsky.txt

1.452 1.399 1.391 1.601 1.656 3.946 2.430 1.545 1.284 1.433 1421 genji.txt

1.999 1.923 1.850 2.047 1.983 3.896 2.629 2.000 1.770 1.845 66 genji02.txt

1.658 1.600 1.572 1.754 1.747 4.350 2.515 1.702 1.446 1.559 473 kokoro.txt

2.128 2.111 2.110 2.110 2.146 7.751 3.150 2.276 1.781 1.839 1202 obiecana.txt

2.864 2.831 2.779 2.822 2.745 7.743 4.071 2.916 2.040 2.066 745 dictionary.txt

1.475 1.448 1.400 1.549 1.559 4.940 1.899 1.502 1.167 1.261 36 license.html

1.427 1.375 1.367 1.572 1.626 4.028 2.404 1.520 1.259 1.406 1450 genji.tar

1.993 1.967 1.958 2.007 2.029 6.794 2.970 2.119 1.681 1.754 1680 kokoziem.tar

Table A.2: Continued from table A.1

66 APPENDIX A. TEST RESULTS

Compressor Description

Single-symbol distributions
UB The uniform distribution over χ = {0, 1, · · · , 255, EOF},

where 0, · · · , 255 represent bytes and EOF is a special
symbol indicating end of file.

UT The uniform distribution over tokens (see section 2.3).
HB Histogram learner (see section 3.1) with a UB base

distribution.
HT As above, but with a UT base distribution.
PT Pólya tree learner (see section 3.2) over tokens.

LZW and variants
LZC The UNIX compress command (Frysinger et al. 2015).

This is a variant of LZW (see section 5.1).
LZA An implementation of LZW using arithmetic coding and

with no memory constraints.
LUB LZA modified to use escaping, as described in

section 5.2, with a UB base distribution.
LUT As above, but with a UT base distribution.
LPT As above, but with a PT base distribution.

PPM and variants
PUB The implementation of PPM described in chapter 4, with

a UB base distribution. Parameters were set to those in
table 6.7, selected by optimising over training data.

PUT As above, but with a UT base distribution.
PPT As above, but with a PT base distribution.
P5B As above, but with maximal context depth set to 5.
PPMII ppmdj, a highly optimised variant of PPM due to

Shkarin (2006). It achieves state-of-the-art compression
effectiveness on text.

Other compressors
SCSU The reference implementation of SCSU (see section 2.2)

due to Freytag (1998).
gzip Version 1.6 of gzip (Deutsch 1996; Gailly 2011).
bzip2 Version 1.0.6 of bzip2 due to Seward (2010).
CMIX Version 9 of cmix due to Knoll (2016).
PAQ paq8hp12any due to Rhatushnyak (2007).

Table A.3: List of all compressors tested in this dissertation.

Bibliography

Åberg, Jan, Yuri M. Shtarkov and Ben J. M. Smeets (1997). ‘Estimation of
escape probabilities for PPM based on universal source coding theory’.
In: Proceedings of the IEEE International Symposium on Information Theory.
Ulm, Germany (cited on page 25).

Arnold, Ross and Timothy Clinton Bell (1997). ‘A corpus for the
evaluation of lossless compression algorithms’. In: Proceedings of the
Data Compression Conference. Snowbird, UT, USA, pages 201–210 (cited
on pages 32–33).

Atkin, Steve and Ryan Stansifer (2003). Unicode compression: does size really
matter? Technical report CS-2002-11. Florida Institute of Technology
(cited on page 8).

Cleary, John Gerald and Ian Hugh Witten (1984). ‘Data compression using
adaptive coding and partial string matching’. In: IEEE Transactions on
Communications 32.4, pages 396–402 (cited on pages 21–25).

Cover, Thomas M. and Roger C. King (1978). ‘A convergent gambling
estimate of the entropy of English’. In: IEEE Transactions on Information
Theory 24.4, pages 413–421 (cited on page 1).

Deorowicz, Sebastian (2003). Silesia compression corpus. url: http : / /

sun . aei . polsl . pl / ~sdeor / index . php ? page = silesia (visited on
22/05/2016) (cited on page 54).

Deutsch, Peter (1996). GZIP file format specification version 4.3. RFC 1952.
RFC Editor, pages 1–12 (cited on page 66).

Fenwick, Peter and Simon Brierly (1998). ‘Compression of Unicode files’.
In: Proceedings of the Data Compression Conference. Snowbird, UT, USA,
pages 547– (cited on page 8).

Freytag, Asmus (1998). SCSU Sample Code. url: http://www.unicode.
org / Public / PROGRAMS / SCSU/ (visited on 06/06/2016) (cited on
page 66).

67

http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://sun.aei.polsl.pl/~sdeor/index.php?page=silesia
http://www.unicode.org/Public/PROGRAMS/SCSU/
http://www.unicode.org/Public/PROGRAMS/SCSU/

68 BIBLIOGRAPHY

Frigyik, Bela A., Amol Kapila and Maya R. Gupta (2010). Introduction
to the Dirichlet Distribution and Related Processes. Technical report
UWEETR-2010-0006. University of Washington (cited on page 15).

Frysinger, Mike, Peter Jannesen, Spencer Thomas, Jim McKie, Steve
Davies, Ken Turkowski et al. (2015). ncompress: A fast, simple LZW file
compressor. url: https://github.com/vapier/ncompress (visited on
18/05/2016) (cited on pages 40, 66).

Gailly, Jean-loup (2011). gzip source code. url: http://ftp.gnu.org/gnu/
gzip/gzip-1.6.tar.gz (cited on page 66).

Howard, Paul G (1993). The Design and Analysis of Efficient Lossless
Data Compression Systems. Technical report. Brown University (cited on
pages 25, 50–51).

Knoll, Byron (2016). cmix. url: http : / / www . byronknoll . com / cmix -

v9.zip (cited on page 66).
MacKay, David J. C. and Linda C. Bauman Peto (1995). ‘A hierarchical

Dirichlet language model’. In: Natural Language Engineering 1 (03),
pages 289–308 (cited on page 24).

Mahoney, Matt (2016a). Large text compression benchmark. url: http://
mattmahoney . net / dc / text . html (visited on 22/05/2016) (cited on
pages 54, 60).

– (2016b). Silesia open source compression benchmark. url: http : / /

mattmahoney . net / dc / silesia . html (visited on 22/05/2016) (cited
on page 54).

Mauldin, R. Daniel, William D. Sudderth and S. C. Williams (1992).
‘Pólya trees and random distributions’. In: The Annals of Statistics 20.3,
pages 1203–1221 (cited on page 18).

Moffat, Alistair (1990). ‘Implementing the PPM data compression
scheme’. In: IEEE Transactions on Communications 38.11, pages 1917–1921
(cited on pages 24–25).

Müller, Peter and Abel Rodriguez (2013). Nonparametric Bayesian Inference.
Institute of Mathematical Statistics (cited on page 18).

Nelder, John A. and Roger Mead (1965). ‘A simplex method for function
minimization’. In: The Computer Journal 7.4, pages 308–313 (cited on
page 44).

Pimienta, Daniel, Daniel Prado and Álvaro Blanco (2009). Twelve years of
measuring linguistic diversity in the Internet: balance and perspectives. Paris:
United Nations Educational, Scientific and Cultural Organization (cited
on page 34).

Rhatushnyak, Alexander (2007). paq8hp12any. url: http://mattmahoney.
net / dc / paq8hp12any _ src . rar (visited on 06/06/2016) (cited on
page 66).

https://github.com/vapier/ncompress
http://ftp.gnu.org/gnu/gzip/gzip-1.6.tar.gz
http://ftp.gnu.org/gnu/gzip/gzip-1.6.tar.gz
http://www.byronknoll.com/cmix-v9.zip
http://www.byronknoll.com/cmix-v9.zip
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/text.html
http://mattmahoney.net/dc/silesia.html
http://mattmahoney.net/dc/silesia.html
http://mattmahoney.net/dc/paq8hp12any_src.rar
http://mattmahoney.net/dc/paq8hp12any_src.rar

BIBLIOGRAPHY 69

Salomon, David (2012). Data Compression: The Complete Reference. Springer
Berlin Heidelberg (cited on pages 23, 28).

Scherer, Markus W. and Mark Davis (2006). BOCU-1: MIME-compatible
Unicode compression. Technical report UTN 6. The Unicode Consortium
(cited on page 7).

Seward, Julian (2010). bzip2. url: http://www.bzip.org/1.0.6/bzip2-
1.0.6.tar.gz (cited on page 66).

Shkarin, Dmitry A. (2006). ppmdj. url: http://www.compression.ru/ds/
ppmdj.rar (cited on page 66).

Steinruecken, Christian (2014). ‘Lossless Data Compression’. PhD thesis.
University of Cambridge (cited on pages 17, 25–26, 40).

Steinruecken, Christian, Zoubin Ghahramani and David MacKay (2015).
‘Improving PPM with dynamic parameter updates’. In: Proceedings of
the Data Compression Conference. Snowbird, UT, USA, pages 193–202
(cited on page 25).

Teh, Whye Yee (2010). ‘Dirichlet process’. In: Encyclopedia of Machine
Learning. Springer US, pages 280–287 (cited on page 15).

The Open Group (2013). ‘compress’. In: The Open Group Base Specifications
Issue 7 (cited on page 40).

The Unicode Consortium (2010). FAQ - Compression. url: http://www.
unicode.org/faq/compression.html (visited on 25/05/2016) (cited on
page 8).

– (2015). The Unicode Standard, Version 8.0.0. The Unicode Consortium
(cited on pages 5–6).

W3Techs (2016a). Usage of character encodings for websites. url: https :

//w3techs.com/technologies/overview/character_encoding/all

(visited on 24/05/2016) (cited on pages 1, 5).
– (2016b). Usage of compression for websites. url: https : / / w3techs .

com / technologies / details / ce - compression / all / all (visited on
27/05/2016) (cited on page 1).

– (2016c). Usage statistics and market share of content languages for websites.
url: http : / / w3techs . com / technologies / overview / content _

language/all (visited on 11/05/2016) (cited on page 34).
Welch, Terry A (1984). ‘A technique for high-performance data

compression’. In: Computer 17.6, pages 8–19 (cited on pages 27–29, 41).
Witten, Ian Hugh and Timothy Clinton Bell (1991). ‘The zero-frequency

problem: estimating the probabilities of novel events in adaptive
text compression’. In: IEEE Transactions on Information Theory 37.4,
pages 1085–1094 (cited on page 25).

http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
http://www.bzip.org/1.0.6/bzip2-1.0.6.tar.gz
http://www.compression.ru/ds/ppmdj.rar
http://www.compression.ru/ds/ppmdj.rar
http://www.unicode.org/faq/compression.html
http://www.unicode.org/faq/compression.html
https://w3techs.com/technologies/overview/character_encoding/all
https://w3techs.com/technologies/overview/character_encoding/all
https://w3techs.com/technologies/details/ce-compression/all/all
https://w3techs.com/technologies/details/ce-compression/all/all
http://w3techs.com/technologies/overview/content_language/all
http://w3techs.com/technologies/overview/content_language/all

70 BIBLIOGRAPHY

Witten, Ian Hugh, Radford Neal and John Gerald Cleary (1987).
‘Arithmetic coding for data compression’. In: Communications of the
ACM 30.6, pages 520–540 (cited on pages 18, 28).

Wolf, Misha, Ken Whistler, Charles Wicksteed, Mark Davis, Asmus
Freytag and Markus W. Scherer (2005). A standard compression scheme
for Unicode. Technical report UTS 6. The Unicode Consortium (cited on
pages 7–8).

Yergeau, François (2003). UTF-8, a transformation format of ISO 10646. STD
63. RFC Editor, pages 1–14 (cited on page 6).

Ziv, Jacob and Abraham Lempel (1977). ‘A universal algorithm for
sequential data compression’. In: IEEE Transactions on Information Theory
23.3, pages 337–343 (cited on page 27).

– (1978). ‘Compression of individual sequences via variable-rate coding’.
In: IEEE Transactions on Information Theory 24.5, pages 530–536 (cited on
page 27).

	Introduction
	Compressing UTF-8 text
	Unicode and UTF-8
	Existing Unicode compression methods
	Transforming UTF-8 data
	Tokens as integers

	Models over tokens
	Histogram learning with smoothing
	Pólya trees
	Applications

	PPM
	The original algorithm
	Update exclusion
	Methods for histogram learning
	Choosing a method
	The PPMG method

	LZW
	Existing implementations
	My extension

	Evaluation
	Test data
	Goals
	Files selected

	Single-symbol models
	LZW
	PPM
	Selecting parameters
	Optimal parameters
	Robustness of parameters
	Effectiveness of the token compressor

	Conclusions
	Summary
	Future work
	Optimised implementation
	Applications to other algorithms
	Compression of other data formats

	Test results
	Compression effectiveness
	Machine specification

	Bibliography

