
Making compression algorithms for Unicode text
Adam Gleave

University of Cambridge
adam.gleave@cantab.net

Christian Steinruecken
University of Cambridge

tcs27@cam.ac.uk

Introduction. Traditional compressors operate on individual bytes. Often, this
design choice makes them work poorly on texts in variable-length encodings such as
UTF-8. We developed a method to modify single-byte compression algorithms so that
they operate directly on characters. We used this method to create proof-of-concept
variants of LZW and PPM that achieve substantially better compression effectiveness
on a UTF-8 corpus than the unmodified algorithms. On ASCII and binary inputs, the
modified and unmodified compressors perform comparably.

Method. To transform a byte-based compression algorithm, we propose the fol-
lowing two modifications. (1) Change the algorithm’s alphabet from the set of bytes
to a set of tokens. The token alphabet contains Unicode characters (used to represent
UTF-8 inputs) and raw bytes (for error conditions and all other data). The input is
mapped from bytes to tokens before compression, with the inverse operation taking
place after decompression. (2) Change the algorithm’s base distribution (typically a
static uniform distribution over bytes) to an adaptive Pólya tree model over tokens.

4:2

3:1

A

20
48

2
3

B

10
48

1
3

5
8

1:1

C

9
48

1
2

D

9
48

1
2

3
8

Pólya tree model. Most texts are written in a single language,
and use only symbols from a few small, contiguous regions of the
Unicode code space. A Pólya tree model is well suited to learning
distributions of this kind, as it tends to assign similar probabilities
to nearby symbols. An example Pólya tree that defines a distribu-
tion over the four symbols {A,B,C,D} is shown on the right.

The model consists of a balanced binary search tree, whose leaf
nodes contain tokens. Each internal node (labelled L:R) maintains occurrence counts
L and R for symbols in the left and right subtrees, which determine the branch-
ing probability (labelled on the edges). A token’s probability is the product of the
branching probabilities along the path from the root to the token. Learning a symbol
therefore boosts the probability of its neighbours, as illustrated in the figure: ‘B’ is
assigned a higher probability than ‘C’ and ‘D’ (despite all three symbols occurring
once each), because ‘B’ is next to the frequently occurring symbol ‘A’.

Group LZW LZW+ PPM PPM+

UTF-8 2.839 2.492 1.980 1.860
ASCII 3.428 3.418 2.350 2.320
Binary 2.467 2.474 1.715 1.675
All 3.002 2.826 2.078 2.002
Mean compression effectiveness, in bits/byte.
Column key: LZW+ and PPM+ are variants.

Evaluation. We tested our compressors on
the English-language Canterbury corpus and
our own multilingual corpus of ten UTF-8 texts,
with languages chosen based on their number
of speakers. Operating over tokens substan-
tially improves compression effectiveness on the
UTF-8 corpus. Performance on the Canterbury
corpus (ASCII and binary groups) is similar for
the modified and unmodified compressors. Despite the radically different designs of
LZW and PPM, both compressors enjoy an improvement in compression effectiveness
from our method, suggesting this approach may be applicable to other compressors.

Full version at http://arxiv.org/abs/1701.04047

mailto:adam.gleave@cantab.net
mailto:tcs27@cam.ac.uk
http://arxiv.org/abs/1701.04047

